Chapter 6 Applications of Integration 6.7 Integrals, Exponential Functions, and Logarithms

Section Exercises

For the following exercises, find the derivative $\frac{dy}{dx}$.

295.
$$y = \ln(2x)$$

Answer:
$$\frac{1}{x}$$

296.
$$y = \ln(2x+1)$$

Answer:
$$\frac{2}{2x+1}$$

$$297. y = \frac{1}{\ln x}$$

Answer:
$$-\frac{1}{x(\ln x)^2}$$

For the following exercises, find the indefinite integral.

$$298. \qquad \int \frac{dt}{3t}$$

Answer:
$$\frac{\ln t}{3} + C$$

$$299. \qquad \int \frac{dx}{1+x}$$

Answer:
$$\ln(x+1)+C$$

For the following exercises, find the derivative dy/dx. (You can use a calculator to plot the function and the derivative to confirm that it is correct.)

300. **[T]**
$$y = \frac{\ln x}{x}$$

Answer:
$$\frac{1-\ln x}{x^2}$$

301. **[T]**
$$y = x \ln x$$

Answer:
$$\ln x + 1$$

302. **[T]**
$$y = \log_{10} x$$

Answer:
$$\frac{1}{x \ln(10)}$$

303. **[T]**
$$y = \ln(\sin x)$$

Answer:
$$\cot(x)$$

304. **[T]**
$$y = \ln(\ln x)$$

Answer:
$$\frac{1}{x \ln x}$$

305. **[T]**
$$y = 7 \ln(4x)$$

Answer:
$$\frac{7}{x}$$

306. **[T]**
$$y = \ln((4x)^7)$$

Answer:
$$\frac{7}{x}$$

307. **[T]**
$$y = \ln(\tan x)$$

Answer:
$$\csc(x)\sec x$$

308. **[T]**
$$y = \ln(\tan(3x))$$

Answer:
$$3\csc(3x)\sec(3x)$$

309. **[T]**
$$y = \ln(\cos^2 x)$$

Answer:
$$-2 \tan x$$

For the following exercises, find the definite or indefinite integral.

$$310. \qquad \int_0^1 \frac{dx}{3+x}$$

Answer:
$$\ln\left(\frac{4}{3}\right)$$

$$311. \qquad \int_0^1 \frac{dt}{3+2t}$$

Answer:
$$\frac{1}{2} \ln \left(\frac{5}{3} \right)$$

312.
$$\int_{0}^{2} \frac{x \, dx}{x^2 + 1}$$

Answer:
$$\frac{1}{2}\ln(5)$$

313.
$$\int_{0}^{2} \frac{x^{3} dx}{x^{2} + 1}$$

Answer:
$$2 - \frac{1}{2} \ln (5)$$

314.
$$\int_{2}^{e} \frac{dx}{x \ln x}$$

Answer:
$$-\ln(\ln 2)$$

$$315. \quad \int_{2}^{e} \frac{dx}{\left(x \ln\left(x\right)\right)^{2}}$$

Answer:
$$\frac{1}{\ln(2)} - 1$$

316.
$$\int \frac{\cos x dx}{\sin x}$$

Answer:
$$\ln(\sin x) + C$$

317.
$$\int_0^{\pi/4} \tan x dx$$

Answer:
$$\frac{1}{2}\ln(2)$$

318.
$$\int \cot(3x)dx$$

Answer:
$$\frac{1}{3}\ln(\sin(3x)) + C$$

$$319. \qquad \int \frac{\left(\ln x\right)^2 dx}{x}$$

Answer:
$$\frac{1}{3}(\ln x)^3$$

For the following exercises, compute dy/dx by differentiating $\ln y$.

320.
$$y = \sqrt{x^2 + 1}$$

Answer:
$$\frac{x}{\sqrt{x^2+1}}$$

321.
$$y = \sqrt{x^2 + 1}\sqrt{x^2 - 1}$$

Answer:
$$\frac{2x^3}{\sqrt{x^2+1}\sqrt{x^2-1}}$$

322.
$$y = e^{\sin x}$$

Answer: $e^{\sin x} \cos x$

323.
$$y = x^{-1/x}$$

Answer: $x^{-2-(1/x)} (\ln x - 1)$

324.
$$y = e^{(ex)}$$

Answer: e^{ex+1}

325.
$$y = x^e$$

Answer: ex^{e-1}

326.
$$y = x^{(ex)}$$

Answer: $ex^{ex} (\ln x + 1)$

327.
$$y = \sqrt{x} \sqrt[3]{x} \sqrt[6]{x}$$

Answer: 1

328.
$$y = x^{-1/\ln x}$$

Answer: 0

329.
$$y = e^{-\ln x}$$

Answer:
$$-\frac{1}{x^2}$$

For the following exercises, evaluate by any method.

330.
$$\int_{5}^{10} \frac{dt}{t} - \int_{5x}^{10x} \frac{dt}{t}$$

Answer: 0

331.
$$\int_{1}^{e^{\pi}} \frac{dx}{x} + \int_{-2}^{-1} \frac{dx}{x}$$

Answer: $\pi - \ln(2)$

$$332. \quad \frac{d}{dx} \int_{x}^{1} \frac{dt}{t}$$

Answer: $-\frac{1}{x}$

$$333. \quad \frac{d}{dx} \int_{x}^{x^2} \frac{dt}{t}$$

Answer: $\frac{1}{x}$

334.
$$\frac{d}{dx}\ln\left(\sec x + \tan x\right)$$

Answer: $\sec x$

For the following exercises, use the function $\ln x$. If you are unable to find intersection points analytically, use a calculator.

335. Find the area of the region enclosed by x = 1 and y = 5 above $y = \ln x$.

Answer: $e^5 - 6$ units²

336. **[T]** Find the arc length of $\ln x$ from x = 1 to x = 2.

Answer: 1.22202

337. Find the area between $\ln x$ and the x-axis from x = 1 to x = 2.

Answer: ln(4)-1 units²

338. Find the volume of the shape created when rotating this curve from x = 1 to x = 2 around the *x*-axis, as pictured here.

Answer: $2\pi \left(\left(\ln \left(2 \right) - 1 \right)^2 \right)$

339. **[T]** Find the surface area of the shape created when rotating the curve in the previous exercise from x = 1 to x = 2 around the x-axis.

Answer: 2.8656

If you are unable to find intersection points analytically in the following exercises, use a calculator.

- 340. Find the area of the hyperbolic quarter-circle enclosed by x = 2 and y = 2 above y = 1/x. Answer: $3 - \ln(4)$
- 341. **[T]** Find the arc length of y = 1/x from x = 1 to x = 4.

Answer: 3.1502

342. Find the area under y = 1/x and above the x-axis from x = 1 to x = 4.

Answer: ln(4)

For the following exercises, verify the derivatives and antiderivatives.

343.
$$\frac{d}{dx}\ln\left(x+\sqrt{x^2+1}\right) = \frac{1}{\sqrt{1+x^2}}$$

Answer: This is a proof; therefore, no answer is provided.

344.
$$\frac{d}{dx}\ln\left(\frac{x-a}{x+a}\right) = \frac{2a}{\left(x^2 - a^2\right)}$$

Answer: This is a proof; therefore, no answer is provided.

345.
$$\frac{d}{dx} \ln \left(\frac{1 + \sqrt{1 - x^2}}{x} \right) = -\frac{1}{x\sqrt{1 - x^2}}$$

Answer: This is a proof; therefore, no answer is provided.

346.
$$\frac{d}{dx} \ln \left(x + \sqrt{x^2 - a^2} \right) = \frac{1}{\sqrt{x^2 - a^2}}$$

Answer: This is a proof; therefore, no answer is provided.

347.
$$\int \frac{dx}{x \ln(x) \ln(\ln x)} = \ln(\ln(\ln x)) + C$$

Answer: This is a proof; therefore, no answer is provided.

This file is copyright 2016, Rice University. All Rights Reserved.