Chapter 6
 Applications of Integration
 6.7 Integrals, Exponential Functions, and Logarithms

Section Exercises

For the following exercises, find the derivative $\frac{d y}{d x}$.
295. $y=\ln (2 x)$

Answer: $\frac{1}{x}$
296. $y=\ln (2 x+1)$

Answer: $\frac{2}{2 x+1}$
297. $y=\frac{1}{\ln x}$

Answer: $-\frac{1}{x(\ln x)^{2}}$
For the following exercises, find the indefinite integral.
298. $\int \frac{d t}{3 t}$

Answer: $\frac{\ln t}{3}+C$
299. $\int \frac{d x}{1+x}$

Answer: $\ln (x+1)+C$

For the following exercises, find the derivative $d y / d x$. (You can use a calculator to plot the function and the derivative to confirm that it is correct.)
300. $\quad[\mathbf{T}] y=\frac{\ln x}{x}$

Answer: $\frac{1-\ln x}{x^{2}}$
301. [T] $y=x \ln x$

Answer: $\ln x+1$
302. $[\mathbf{T}] y=\log _{10} x$

Answer: $\frac{1}{x \ln (10)}$
303. [T] $y=\ln (\sin x)$

Answer: $\cot (x)$
304. [T] $y=\ln (\ln x)$

Answer: $\frac{1}{x \ln x}$
305. [T] $y=7 \ln (4 x)$

Answer: $\frac{7}{x}$
306. $[\mathbf{T}] y=\ln \left((4 x)^{7}\right)$

Answer: $\frac{7}{x}$
307. [T] $y=\ln (\tan x)$

Answer: $\csc (x) \sec x$
308. $[\mathbf{T}] y=\ln (\tan (3 x))$

Answer: $3 \csc (3 x) \sec (3 x)$
309. [$\mathbf{T}] y=\ln \left(\cos ^{2} x\right)$

Answer: $-2 \tan x$
For the following exercises, find the definite or indefinite integral.
310. $\int_{0}^{1} \frac{d x}{3+x}$

Answer: $\ln \left(\frac{4}{3}\right)$
311. $\int_{0}^{1} \frac{d t}{3+2 t}$

Answer: $\frac{1}{2} \ln \left(\frac{5}{3}\right)$
312. $\int_{0}^{2} \frac{x d x}{x^{2}+1}$

Answer: $\frac{1}{2} \ln (5)$
313. $\int_{0}^{2} \frac{x^{3} d x}{x^{2}+1}$

Answer: $2-\frac{1}{2} \ln (5)$
314. $\int_{2}^{e} \frac{d x}{x \ln x}$

Answer: $-\ln (\ln 2)$
315. $\int_{2}^{e} \frac{d x}{(x \ln (x))^{2}}$

Answer: $\frac{1}{\ln (2)}-1$
316. $\int \frac{\cos x d x}{\sin x}$

Answer: $\ln (\sin x)+C$
317. $\int_{0}^{\pi / 4} \tan x d x$

Answer: $\frac{1}{2} \ln (2)$
318. $\int \cot (3 x) d x$

Answer: $\frac{1}{3} \ln (\sin (3 x))+C$
319. $\int \frac{(\ln x)^{2} d x}{x}$

Answer: $\frac{1}{3}(\ln x)^{3}$

For the following exercises, compute $d y / d x$ by differentiating $\ln y$.
320. $y=\sqrt{x^{2}+1}$

Answer: $\frac{x}{\sqrt{x^{2}+1}}$
321. $y=\sqrt{x^{2}+1} \sqrt{x^{2}-1}$

Answer: $\frac{2 x^{3}}{\sqrt{x^{2}+1} \sqrt{x^{2}-1}}$
322. $y=e^{\sin x}$

Answer: $e^{\sin x} \cos x$
323. $y=x^{-1 / x}$

Answer: $x^{-2-(1 / x)}(\ln x-1)$
324. $y=e^{(e x)}$

Answer: $e^{e x+1}$
325. $y=x^{e}$

Answer: $e x^{e-1}$
326. $y=x^{(e x)}$

Answer: $e x^{e x}(\ln x+1)$
327. $y=\sqrt{x} \sqrt[3]{x} \sqrt[6]{x}$

Answer: 1
328. $y=x^{-1 / \ln x}$

Answer: 0
329. $y=e^{-\ln x}$

Answer: $-\frac{1}{x^{2}}$
For the following exercises, evaluate by any method.
330. $\int_{5}^{10} \frac{d t}{t}-\int_{5 x}^{10 x} \frac{d t}{t}$

Answer: 0
331. $\int_{1}^{e^{\pi}} \frac{d x}{x}+\int_{-2}^{-1} \frac{d x}{x}$

Answer: $\pi-\ln (2)$
332. $\frac{d}{d x} \int_{x}^{1} \frac{d t}{t}$

Answer: $-\frac{1}{x}$
333. $\frac{d}{d x} \int_{x}^{x^{2}} \frac{d t}{t}$

Answer: $\frac{1}{x}$
334. $\frac{d}{d x} \ln (\sec x+\tan x)$

Answer: $\sec x$
For the following exercises, use the function $\ln x$. If you are unable to find intersection points analytically, use a calculator.
335. Find the area of the region enclosed by $x=1$ and $y=5$ above $y=\ln x$.

Answer: $e^{5}-6$ units 2
336. [T] Find the arc length of $\ln x$ from $x=1$ to $x=2$.

Answer: 1.22202
337. Find the area between $\ln x$ and the x-axis from $x=1$ to $x=2$.

Answer: $\ln (4)-1$ units 2
338. Find the volume of the shape created when rotating this curve from $x=1$ to $x=2$ around the x-axis, as pictured here.

Answer: $2 \pi\left((\ln (2)-1)^{2}\right)$
339. [T] Find the surface area of the shape created when rotating the curve in the previous exercise from $x=1$ to $x=2$ around the x-axis.
Answer: 2.8656
If you are unable to find intersection points analytically in the following exercises, use a calculator.
340. Find the area of the hyperbolic quarter-circle enclosed by $x=2$ and $y=2$ above $y=1 / x$. Answer: $3-\ln (4)$
341. [T] Find the arc length of $y=1 / x$ from $x=1$ to $x=4$.

Answer: 3.1502
342. Find the area under $y=1 / x$ and above the x-axis from $x=1$ to $x=4$.

Answer: $\ln (4)$

For the following exercises, verify the derivatives and antiderivatives.
343. $\frac{d}{d x} \ln \left(x+\sqrt{x^{2}+1}\right)=\frac{1}{\sqrt{1+x^{2}}}$

Answer: This is a proof; therefore, no answer is provided.
344. $\frac{d}{d x} \ln \left(\frac{x-a}{x+a}\right)=\frac{2 a}{\left(x^{2}-a^{2}\right)}$

Answer: This is a proof; therefore, no answer is provided.
345. $\frac{d}{d x} \ln \left(\frac{1+\sqrt{1-x^{2}}}{x}\right)=-\frac{1}{x \sqrt{1-x^{2}}}$

Answer: This is a proof; therefore, no answer is provided.
346. $\frac{d}{d x} \ln \left(x+\sqrt{x^{2}-a^{2}}\right)=\frac{1}{\sqrt{x^{2}-a^{2}}}$

Answer: This is a proof; therefore, no answer is provided.
347. $\int \frac{d x}{x \ln (x) \ln (\ln x)}=\ln (\ln (\ln x))+C$

Answer: This is a proof; therefore, no answer is provided.

This file is copyright 2016, Rice University. All Rights Reserved.

