Chapter 5
 Integration

5.7. Integrals Resulting in Inverse Trigonometric Functions

Section Exercises

In the following exercises, evaluate each integral in terms of an inverse trigonometric function.
391. $\int_{0}^{\sqrt{3} / 2} \frac{d x}{\sqrt{1-x^{2}}}$

Answer: $\left.\sin ^{-1} x\right|_{0} ^{\sqrt{3} / 2}=\frac{\pi}{3}$
392. $\int_{-1 / 2}^{1 / 2} \frac{d x}{\sqrt{1-x^{2}}}$

Answer: $\left.\sin ^{-1} x\right|_{-1 / 2} ^{1 / 2}=\frac{\pi}{3}$
393. $\int_{\sqrt{3}}^{1} \frac{d x}{\sqrt{1+x^{2}}}$

Answer: $\left.\tan ^{-1} x\right|_{\sqrt{3}} ^{1}=-\frac{\pi}{12}$
394. $\int_{1 / \sqrt{3}}^{\sqrt{3}} \frac{d x}{1+x^{2}}$

Answer: $\left.\tan ^{-1} x\right|_{-1 / \sqrt{3}} ^{\sqrt{3}}=\frac{\pi}{6}$
395. $\int_{1}^{\sqrt{2}} \frac{d x}{|x| \sqrt{x^{2}-1}}$

Answer: $\left.\sec ^{-1} x\right|_{1} ^{\sqrt{2}}=\frac{\pi}{4}$
396. $\int_{1}^{2 / \sqrt{3}} \frac{d x}{|x| \sqrt{x^{2}-1}}$

Answer: $\left.\sec ^{-1} x\right|_{1} ^{2 / \sqrt{3}}=\frac{\pi}{6}$

In the following exercises, find each indefinite integral, using appropriate substitutions.

397. $\int \frac{d x}{\sqrt{9-x^{2}}}$

Answer: $\sin ^{-1}\left(\frac{x}{3}\right)+C$
398. $\int \frac{d x}{\sqrt{1-16 x^{2}}}$

Answer: $\frac{1}{4} \sin ^{-1}(4 x)+C$
399. $\int \frac{d x}{9+x^{2}}$

Answer: $\frac{1}{3} \tan ^{-1}\left(\frac{x}{3}\right)+C$
400. $\int \frac{d x}{25+16 x^{2}}$

Answer: $\frac{1}{20} \tan ^{-1}\left(\frac{4 x}{5}\right)+C$
401. $\int \frac{d x}{|x| \sqrt{x^{2}-9}}$

Answer: $\frac{1}{3} \sec ^{-1}\left(\frac{x}{3}\right)+C$
402. $\int \frac{d x}{|x| \sqrt{4 x^{2}-16}}$

Answer: $\frac{1}{4} \sec ^{-1}\left(\frac{x}{2}\right)+C$
403. Explain the relationship $-\cos ^{-1} t+C=\int \frac{d t}{\sqrt{1-t^{2}}}=\sin ^{-1} t+C$. Is it true, in general, that $\cos ^{-1} t=-\sin ^{-1} t ?$
Answer: $\cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta$. So, $\sin ^{-1} t=\frac{\pi}{2}-\cos ^{-1} t$. They differ by a constant.
404. Explain the relationship $\sec ^{-1} t+C=\int \frac{d t}{|t| \sqrt{t^{2}-1}}=-\csc ^{-1} t+C$. Is it true, in general, that $\sec ^{-1} t=-\csc ^{-1} t ?$
Answer: $\sec \left(\frac{\pi}{2}-\theta\right)=\csc \theta$. They differ by a constant $\frac{\pi}{2}$
405. Explain what is wrong with the following integral: $\int_{1}^{2} \frac{d t}{\sqrt{1-t^{2}}}$.

Answer: $\sqrt{1-t^{2}}$ is not defined as a real number when $t>1$.
406. Explain what is wrong with the following integral: $\int_{-1}^{1} \frac{d t}{|t| \sqrt{t^{2}-1}}$.

Answer: $\sqrt{t^{2}-1}$ is not defined as a real number when $|t|<1$.
In the following exercises, solve for the antiderivative $\int f$ of \boldsymbol{f} with $C=0$, then use a calculator to graph \boldsymbol{f} and the antiderivative over the given interval $[a, b]$. Identify a value of \boldsymbol{C} such that adding \boldsymbol{C} to the antiderivative recovers the definite integral $F(x)=\int_{a}^{x} f(t) d t$.
407.
$[\mathbf{T}] \int \frac{1}{\sqrt{9-x^{2}}} d x$ over $[-3,3]$
Answer:

The antiderivative is $\sin ^{-1}\left(\frac{x}{3}\right)+C$. Taking $C=\frac{\pi}{2}$ recovers the definite integral.
408. [T] $\int \frac{9}{9+x^{2}} d x$ over $[-6,6]$

Answer:

The antiderivative is $3 \tan ^{-1}\left(\frac{x}{3}\right)+C$. Taking $C=3 \arctan (2)$ recovers the definite integral.
409. [T] $\int \frac{\cos x}{4+\sin ^{2} x} d x$ over $[-6,6]$

Answer:

The antiderivative is $\frac{1}{2} \tan ^{-1}\left(\frac{\sin x}{2}\right)+C$. Taking $C=\frac{1}{2} \tan ^{-1}\left(\frac{\sin (6)}{2}\right)$ recovers the definite integral.
410. [T] $\int \frac{e^{x}}{1+e^{2 x}} d x$ over $[-6,6]$

Answer:

The antiderivative is $\tan ^{-1}\left(e^{x}\right)+C$. Taking $C=\tan ^{1}\left(e^{6}\right)$ recovers the definite integral.
In the following exercises, compute the antiderivative using appropriate substitutions.
411. $\int \frac{\sin ^{-1} t d t}{\sqrt{1-t^{2}}}$

Answer: $\frac{1}{2}\left(\sin ^{-1} t\right)^{2}+C$
412. $\int \frac{d t}{\sin ^{-1} t \sqrt{1-t^{2}}}$

Answer: $\ln \left(\sin ^{-1} t\right)+C$
413. $\int \frac{\tan ^{-1}(2 t)}{1+4 t^{2}} d t$

Answer: $\frac{1}{4}\left(\tan ^{-1}(2 t)\right)^{2}$
414. $\int \frac{t \tan ^{-1}\left(t^{2}\right)}{1+t^{4}} d t$

Answer: $\frac{1}{4}\left(\tan ^{-1}\left(t^{2}\right)\right)^{2}$
415. $\int \frac{\sec ^{-1}\left(\frac{t}{2}\right)}{|t| \sqrt{t^{2}-4}} d t$

Answer: $\frac{1}{4}\left(\sec ^{-1}\left(\frac{t}{2}\right)^{2}\right)+C$
416. $\int \frac{t \sec ^{-1}\left(t^{2}\right)}{t^{2} \sqrt{t^{4}-1}} d t$

Answer: $\frac{1}{4}\left(\sec ^{-1}\left(t^{2}\right)\right)^{2}+C$

In the following exercises, use a calculator to graph the antiderivative $\int f$ with $C=0$ over the given interval $[a, b]$. Approximate a value of \boldsymbol{C}, if possible, such that adding \boldsymbol{C} to the antiderivative gives the same value as the definite integral $F(x)=\int_{a}^{x} f(t) d t$.
417. $[\mathbf{T}] \int \frac{1}{x \sqrt{x^{2}-4}} d x$ over $[2,6]$

Answer:

The antiderivative is $\frac{1}{2} \sec ^{1}\left(\frac{x}{2}\right)+C$. Taking $C=0$ recovers the definite integral over $[2,6]$.
418.

$$
[\mathbf{T}] \int \frac{1}{(2 x+2) \sqrt{x}} d x \text { over }[0,6]
$$

Answer:

The antiderivative is $\tan ^{1}(\sqrt{x})+C$. Taking $C=0$ recovers the definite integral.
419. [T] $\int \frac{(\sin x+x \cos x)}{1+x^{2} \sin ^{2} x} d x$ over $[-6,6]$

Answer:

The general antiderivative is $\tan ^{-1}(x \sin x)+C$. Taking $C=-\tan ^{-1}(6 \sin (6))$ recovers the definite integral.
420. $\quad[\mathbf{T}] \int \frac{2 e^{-2 x}}{\sqrt{1-e^{-4 x}}} d x$ over $[0,2]$

Answer:

The general antiderivative is $\sec ^{-1}\left(e^{2 x}\right)+C$.Taking $C=0$ appears to recover the definite integral.
421. [T] $\int \frac{1}{x+x \ln ^{2} x}$ over [0, 2]

The general antiderivative is $\tan ^{-1}(\ln x)+C$. Taking $C=\frac{\pi}{2}=\tan ^{-1} \infty$ recovers the definite integral.
422. [T] $\int \frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}$ over $[-1,1]$

Answer:

The general antiderivative is $\frac{1}{2} \sin ^{-1}(x)^{2}+C$. Taking $C=\frac{\pi^{2}}{8}$ recovers the definite integral.
In the following exercises, compute each integral using appropriate substitutions.
423. $\int \frac{e^{t}}{\sqrt{1-e^{2 t}}} d t$

Answer: $\sin ^{-1}\left(e^{t}\right)+C$
424. $\int \frac{e^{t}}{1+e^{2 t}} d t$

Answer: $\tan ^{-1}\left(e^{t}\right)+C$
425. $\int \frac{d t}{t \sqrt{1-\ln ^{2} t}}$

Answer: $\sin ^{-1}(\ln t)+C$
426. $\int \frac{d t}{t\left(1+\ln ^{2} t\right)}$

Answer: $\tan ^{-1}(\ln t)+C$
427. $\int \frac{\cos ^{-1}(2 t)}{\sqrt{1-4 t^{2}}} d t$

Answer: $-\frac{1}{2}\left(\cos ^{-1}(2 t)\right)^{2}+C$
428. $\int \frac{e^{t} \cos ^{-1}\left(e^{t}\right)}{\sqrt{1-e^{2 t}}} d t$

Answer: $-\frac{1}{2}\left(\cos ^{-1}\left(e^{t}\right)\right)^{2}+C$
In the following exercises, compute each definite integral.
429. $\int_{0}^{1 / 2} \frac{\tan \left(\sin ^{-1} t\right)}{\sqrt{1-t^{2}}} d t$

Answer: $\frac{1}{2} \ln \left(\frac{4}{3}\right)$
430. $\int_{1 / 4}^{1 / 2} \frac{\tan \left(\cos ^{-1} t\right)}{\sqrt{1-t^{2}}} d t$

Answer: $\ln 2$
431. $\int_{0}^{1 / 2} \frac{\sin \left(\tan ^{-1} t\right)}{1+t^{2}} d t$

Answer: $1-\frac{2}{\sqrt{5}}$
432. $\int_{0}^{1 / 2} \frac{\cos \left(\tan ^{-1} t\right)}{1+t^{2}} d t$

Answer: $\frac{1}{\sqrt{5}}$
433. For $A>0$, compute $I(A)=\int_{-A}^{A} \frac{d t}{1+t^{2}}$ and evaluate $\lim _{a \rightarrow \infty} I(A)$, the area under the graph of $\frac{1}{1+t^{2}}$ on $[-\infty, \infty]$.
Answer: $2 \tan ^{-1}(A) \rightarrow \pi$ as $A \rightarrow \infty$
434. For $1<B<\infty$, compute $I(B)=\int_{1}^{B} \frac{d t}{t \sqrt{t^{2}-1}}$ and evaluate $\lim _{B \rightarrow \infty} I(B)$, the area under the graph of $\frac{1}{t \sqrt{t^{2}-1}}$ over $[1, \infty)$.
Answer: $\sec ^{-1}(B)-\sec ^{-1}(1) \rightarrow \frac{\pi}{2}$ as $B \rightarrow \infty$
435. Use the substitution $u=\sqrt{2} \cot x$ and the identity $1+\cot ^{2} x=\csc ^{2} x$ to evaluate $\int \frac{d x}{1+\cos ^{2} x}$. (Hint: Multiply the top and bottom of the integrand by $\csc ^{2} x$.))
Answer: Using the hint, one has $\int \frac{\csc ^{2} x}{\csc ^{2} x+\cot ^{2} x} d x=\int \frac{\csc ^{2} x}{1+2 \cot ^{2} x} d x$. Set $u=\sqrt{2} \cot x$.
Then, $d u=-\sqrt{2} \csc ^{2} x$ and the integral is $-\frac{1}{\sqrt{2}} \int \frac{d u}{1+u^{2}}=-\frac{1}{\sqrt{2}} \tan ^{-1} u+C$
$=\frac{1}{\sqrt{2}} \tan ^{-1}(\sqrt{2} \cot x)+C$. If one uses the identity $\tan ^{-1} s+\tan ^{-1}\left(\frac{1}{s}\right)=\frac{\pi}{2}$, then this can also be written $\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\tan x}{\sqrt{2}}\right)+C$.
436. [T] Approximate the points at which the graphs of $f(x)=2 x^{2}-1$ and $g(x)=\left(1+4 x^{2}\right)^{-3 / 2}$ intersect, and approximate the area between their graphs accurate to three decimal places.
Answer: $x= \pm 0.763$. The left endpoint estimate with $N=100$ gives the area 1.770 and these decimals stay the same for $N=500$
437. [T] Approximate the points at which the graphs of $f(x)=x^{2}-1$ and $f(x)=x^{2}-1$ intersect, and approximate the area between their graphs accurate to three decimal places. Answer: $x \approx \pm 1.13525$. The left endpoint estimate with $N=100$ is 2.796 and these decimals persist for $N=500$.
438. Use the following graph to prove that $\int_{0}^{x} \sqrt{1-t^{2}} d t=\frac{1}{2} x \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1} x$.

Answer: The integral represents the area below the graph, which is the sum of the shaded areas. The triangle has area $1 / 2 x \sqrt{1-x^{2}}$. The area above is the area of a wedge subtended by the angle with sine equal to x.

Chapter Review Exercises

True or False. Justify your answer with a proof or a counterexample. Assume all functions f and g are continuous over their domains.
439. If $f(x)>0, f(x)>0$ for all x, then the right-hand rule underestimates the integral $\int_{a}^{b} f(x)$. Use a graph to justify your answer.
Answer: False
440. $\quad \int_{a}^{b} f(x)^{2} d x=\int_{a}^{b} f(x) d x \int_{a}^{b} f(x) d x$

Answer: False
441. If $f(x) \leq g(x)$ for all $x \in[a, b]$, then $\int_{a}^{b} f(x) \leq \int_{a}^{b} g(x)$.

Answer: True
442. All continuous functions have an antiderivative.

Answer: True
Evaluate the Riemann sums L_{4} and R_{4} for the following functions over the specified interval. Compare your answer with the exact answer, when possible, or use a calculator to determine the answer.
443. $y=3 x^{2}-2 x+1$ over $[-1,1]$

Answer: $L_{4}=5.25, R_{4}=3.25$, exact answer: 4
444. $y=\ln \left(x^{2}+1\right)$ over $[0, e]$

Answer: $L_{4}=2.084, R_{4}=3.529$, exact answer: 2.782
445. $y=x^{2} \sin x$ over $[0, \pi]$

Answer: $L_{4}=5.364, R_{4}=5.364$, exact answer: 5.870
446. $y=\sqrt{x}+\frac{1}{x}$ over $[1,4]$

Answer: $L_{4}=5.989, R_{4}=6.177$, exact answer: $\left.\frac{14}{3}+\ln (4)\right)$

Evaluate the following integrals.

447. $\int_{-1}^{1}\left(x^{3}-2 x^{2}+4 x\right) d x$

Answer: $-\frac{4}{3}$
448. $\int_{0}^{4} \frac{3 t}{\sqrt{1+6 t^{2}}} d t$

Answer: $\frac{1}{2}(\sqrt{97}-1)$
449. $\int_{\pi / 3}^{\pi / 2} 2 \sec (2 \theta) \tan (2 \theta) d \theta$

Answer: 1
450. $\quad \int_{0}^{\pi / 4} e^{\cos ^{2} x} \sin x \cos d x$

Answer: $\frac{1}{2}(e-\sqrt{e})$

Find the antiderivative.
451. $\int \frac{d x}{(x+4)^{3}}$

Answer: $-\frac{1}{2(x+4)^{2}}+C$
452. $\int x \ln \left(x^{2}\right) d x$

Answer: $\frac{x^{2}}{2}\left(\ln \left(x^{2}\right)-1\right)+C$
453. $\int \frac{4 x^{2}}{\sqrt{1-x^{6}}} d x$

Answer: $\frac{4}{3} \sin ^{-1}\left(x^{3}\right)+C$
454. $\int \frac{e^{2 x}}{1+e^{4 x}} d x$

Answer: $\frac{1}{2} \tan ^{-1}\left(e^{2 x}\right)+C$

Find the derivative.
455. $\frac{d}{d t} \int_{0}^{t} \frac{\sin x}{\sqrt{1+x^{2}}} d x$

Answer: $\frac{\sin t}{\sqrt{1+t^{2}}}$
456. $\frac{d}{d x} \int_{1}^{x^{3}} \sqrt{4-t^{2}} d t$

Answer: $3 x^{2} \sqrt{4-x^{6}}$
457. $\frac{d}{d x} \int_{1}^{\ln (x)}\left(4 t+e^{t}\right) d t$

Answer: $4 \frac{\ln x}{x}+1$
458. $\frac{d}{d x} \int_{0}^{\cos x} e^{t^{2}} d t$

Answer: $-e^{\cos ^{2} x} \sin x$
The following problems consider the historic average cost per gigabyte of RAM on a computer.

Year	5-Year Change (\$)
1980	0
1985	$-5,468,750$
1990	$-755,495$
1995	$-73,005$
2000	$-29,768$
2005	-918
2010	-177

459. If the average cost per gigabyte of RAM in 2010 is $\$ 12$, find the average cost per gigabyte of RAM in 1980.
Answer: \$6,328,113
460. The average cost per gigabyte of RAM can be approximated by the function $C(t)=8,500,000(0.65)^{t}$, where t is measured in years since 1980 , and C is cost in US\$. Find the average cost per gigabyte of RAM for 1980 to 2010.
Answer: \$657,716
461. Find the average cost of 1GB RAM for 2005 to 2010.

Answer: \$73.36
462. The velocity of a bullet from a rifle can be approximated by $v(t)=6400 t^{2}-6505 t+2686$, where t is seconds after the shot and v is the velocity measured in feet per second. This equation only models the velocity for the first halfsecond after the shot: $0 \leq t \leq 0.5$. What is the total distance the bullet travels in 0.5 sec ?
Answer: $\frac{19117}{24} \mathrm{ft}$, or 796.5 ft
463. What is the average velocity of the bullet for the first half-second?

Answer: $\frac{19117}{12} \mathrm{ft} / \mathrm{sec}$, or $1593 \mathrm{ft} / \mathrm{sec}$

This file is copyright 2016, Rice University. All Rights Reserved.

