Chapter 5 Integration 5.7. Integrals Resulting in Inverse Trigonometric Functions

Section Exercises

In the following exercises, evaluate each integral in terms of an inverse trigonometric function.

391. $\int_{-\infty}^{\sqrt{3}/2} \frac{dx}{\sqrt{1-x^2}}$ Answer: $\sin^{-1} x \Big|_{0}^{\sqrt{3}/2} = \frac{\pi}{3}$ 392. $\int_{-1/2}^{1/2} \frac{dx}{\sqrt{1-x^2}}$ Answer: $\sin^{-1} x \Big|_{-1/2}^{1/2} = \frac{\pi}{3}$ 393. $\int_{-\pi}^{1} \frac{dx}{\sqrt{1+x^2}}$ Answer: $\tan^{-1} x \Big|_{\sqrt{3}}^{1} = -\frac{\pi}{12}$ 394. $\int_{1/\sqrt{3}}^{\sqrt{3}} \frac{dx}{1+x^2}$ Answer: $\tan^{-1} x \Big|_{-\frac{1}{\sqrt{3}}}^{\sqrt{3}} = \frac{\pi}{6}$ 395. $\int_{1}^{\sqrt{2}} \frac{dx}{|x|\sqrt{x^2-1}}$ Answer: $\sec^{-1} x \Big|_{1}^{\sqrt{2}} = \frac{\pi}{4}$ 396. $\int_{1}^{2/\sqrt{3}} \frac{dx}{|x|\sqrt{x^2-1}}$ Answer: $\sec^{-1} x \Big|_{1}^{2/\sqrt{3}} = \frac{\pi}{6}$

In the following exercises, find each indefinite integral, using appropriate substitutions.

$$397. \int \frac{dx}{\sqrt{9-x^2}}$$
Answer: $\sin^{-1}\left(\frac{x}{3}\right) + C$

$$398. \int \frac{dx}{\sqrt{1-16x^2}}$$
Answer: $\frac{1}{4}\sin^{-1}(4x) + C$

$$399. \int \frac{dx}{9+x^2}$$
Answer: $\frac{1}{3}\tan^{-1}\left(\frac{x}{3}\right) + C$

$$400. \int \frac{dx}{25+16x^2}$$
Answer: $\frac{1}{20}\tan^{-1}\left(\frac{4x}{5}\right) + C$

$$401. \int \frac{dx}{|x|\sqrt{x^2-9}}$$
Answer: $\frac{1}{3}\sec^{-1}\left(\frac{x}{3}\right) + C$

$$402. \int \frac{dx}{|x|\sqrt{4x^2-16}}$$
Answer: $\frac{1}{4}\sec^{-1}\left(\frac{x}{2}\right) + C$

403. Explain the relationship $-\cos^{-1}t + C = \int \frac{dt}{\sqrt{1-t^2}} = \sin^{-1}t + C$. Is it true, in general, that $\cos^{-1}t = -\sin^{-1}t$? Answer: $\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$. So, $\sin^{-1}t = \frac{\pi}{2} - \cos^{-1}t$. They differ by a constant. 404. Explain the relationship $\sec^{-1} t + C = \int \frac{dt}{|t|\sqrt{t^2 - 1}} = -\csc^{-1} t + C$. Is it true, in general, that $\sec^{-1} t = -\csc^{-1} t$? sec⁻¹ $t = -\csc^{-1} t$? Answer: $\sec\left(\frac{\pi}{2} - \theta\right) = \csc \theta$. They differ by a constant $\frac{\pi}{2}$

Explain what is wrong with the following integral: $\int_{-1}^{2} \frac{dt}{\sqrt{1-t^2}}.$ 405. Answer: $\sqrt{1-t^2}$ is not defined as a real number when t > 1.

Explain what is wrong with the following integral: $\int_{-1}^{1} \frac{dt}{|t|\sqrt{t^2-1}}.$ 406.

Answer: $\sqrt{t^2 - 1}$ is not defined as a real number when |t| < 1.

In the following exercises, solve for the antiderivative $\int f \, \mathbf{of} \, f$ with C = 0, then use a calculator to graph f and the antiderivative over the given interval [a, b]. Identify a value of C such that adding C to the antiderivative recovers the definite integral $F(x) = \int_{a}^{x} f(t) dt.$

407. **[T]**
$$\int \frac{1}{\sqrt{9-x^2}} dx$$
 over [-3, 3]

Answer:

The antiderivative is $\sin^{-1}\left(\frac{x}{3}\right) + C$. Taking $C = \frac{\pi}{2}$ recovers the definite integral.

The antiderivative is $3 \tan^{-1}\left(\frac{x}{3}\right) + C$. Taking $C = 3\arctan(2)$ recovers the definite integral.

The antiderivative is $\frac{1}{2} \tan^{-1} \left(\frac{\sin x}{2} \right) + C$. Taking $C = \frac{1}{2} \tan^{-1} \left(\frac{\sin (6)}{2} \right)$ recovers the definite integral.

410. **[T]**
$$\int \frac{e^x}{1+e^{2x}} dx$$
 over [-6, 6]

Answer:

The antiderivative is $\tan^{-1}(e^x) + C$. Taking $C = -\tan^{-1}(e^{-6})$ recovers the definite integral.

In the following exercises, compute the antiderivative using appropriate substitutions.

411.
$$\int \frac{\sin^{-1} t dt}{\sqrt{1-t^2}}$$

Answer:
$$\frac{1}{2} \left(\sin^{-1} t\right)^2 + C$$

412.
$$\int \frac{dt}{\sin^{-1}t\sqrt{1-t^2}}$$
Answer: $\ln(\sin^{-1}t) + C$

1.

413.
$$\int \frac{\tan^{-1}(2t)}{1+4t^2} dt$$

Answer: $\frac{1}{4} (\tan^{-1}(2t))^2$
414.
$$\int \frac{t \tan^{-1}(t^2)}{1+t^4} dt$$

Answer:
$$\frac{1}{4} (\tan^{-1}(t^2))^2$$

/

415.
$$\int \frac{\sec^{-1}\left(\frac{t}{2}\right)}{|t|\sqrt{t^2 - 4}} dt$$

Answer:
$$\frac{1}{4} \left(\sec^{-1}\left(\frac{t}{2}\right)^2\right) + C$$

416.
$$\int \frac{t \sec^{-1}\left(t^2\right)}{t^2 \sqrt{t^4 - 1}} dt$$

Answer:
$$\frac{1}{4} \left(\sec^{-1}\left(t^2\right)\right)^2 + C$$

In the following exercises, use a calculator to graph the antiderivative $\int f$ with C = 0 over the given interval [a, b]. Approximate a value of C, if possible, such that adding C to the antiderivative gives the same value as the definite integral $F(x) = \int_{a}^{x} f(t) dt$.

The antiderivative is $\frac{1}{2}\sec^{-1}\left(\frac{x}{2}\right) + C$. Taking C = 0 recovers the definite integral over [2, 6].

418. **[T]**
$$\int \frac{1}{(2x+2)\sqrt{x}} dx$$
 over [0, 6]

Answer:

$$\begin{array}{c}
1.5 \\
1 \\
0.5 \\
\hline
f(x) = \sqrt{2} \arctan\left(\frac{1}{2}\sqrt{2}\sqrt{x}\right) \\
\hline
0 \\
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
x
\end{array}$$

The antiderivative is $\tan^{-1}(\sqrt{x}) + C$. Taking C = 0 recovers the definite integral.

419. **[T]**
$$\int \frac{(\sin x + x \cos x)}{1 + x^2 \sin^2 x} dx$$
 over [-6, 6]

Answer:

The general antiderivative is $\tan^{-1}(x \sin x) + C$. Taking $C = -\tan^{-1}(6\sin(6))$ recovers the definite integral.

420. **[T]**
$$\int \frac{2e^{-2x}}{\sqrt{1-e^{-4x}}} dx$$
 over [0, 2]
Answer:

$$y_{1.5}$$

$$1-$$

$$0.5$$

$$f(x) = \operatorname{arcsec} (e^{2x})$$

$$0$$

$$0.5$$

$$1$$

$$1.5$$

$$2$$

$$x$$

$$-0.5$$

The general antiderivative is $\sec^{-1}(e^{2x}) + C$. Taking C = 0 appears to recover the definite integral.

421. **[T]**
$$\int \frac{1}{x + x \ln^2 x}$$
 over [0, 2]

Answer:

The general antiderivative is $\tan^{-1}(\ln x) + C$. Taking $C = \frac{\pi}{2} = \tan^{-1} \infty$ recovers the definite integral.

The general antiderivative is $\frac{1}{2}\sin^{-1}(x)^2 + C$. Taking $C = \frac{\pi^2}{8}$ recovers the definite integral. In the following exercises, compute each integral using appropriate substitutions.

423.
$$\int \frac{e^t}{\sqrt{1-e^{2t}}} dt$$

Answer: $\sin^{-1}(e^t) + C$

$$424. \qquad \int \frac{e^t}{1+e^{2t}} dt$$

Answer: $\tan^{-1}(e^t) + C$

425.
$$\int \frac{dt}{t\sqrt{1-\ln^2 t}}$$

Answer: $\sin^{-1}(\ln t) + C$

$$426. \qquad \int \frac{dt}{t\left(1+\ln^2 t\right)}$$

Answer: $\tan^{-1}(\ln t) + C$

427.
$$\int \frac{\cos^{-1}(2t)}{\sqrt{1-4t^2}} dt$$

Answer: $-\frac{1}{2} (\cos^{-1}(2t))^2 + C$

428.
$$\int \frac{e^t \cos^{-1}\left(e^t\right)}{\sqrt{1 - e^{2t}}} dt$$

Answer: $-\frac{1}{2} \left(\cos^{-1}\left(e^t\right)\right)^2 + C$

In the following exercises, compute each definite integral.

429.
$$\int_{0}^{1/2} \frac{\tan\left(\sin^{-1}t\right)}{\sqrt{1-t^{2}}} dt$$

Answer:
$$\frac{1}{2} \ln\left(\frac{4}{3}\right)$$

430.
$$\int_{1/4}^{1/2} \frac{\tan\left(\cos^{-1}t\right)}{\sqrt{1-t^2}} dt$$

Answer: ln 2

431.
$$\int_{0}^{1/2} \frac{\sin(\tan^{-1} t)}{1+t^{2}} dt$$

Answer: $1 - \frac{2}{\sqrt{5}}$

432.
$$\int_{0}^{1/2} \frac{\cos(\tan^{-1} t)}{1+t^{2}} dt$$

Answer: $\frac{1}{\sqrt{5}}$

433. For A > 0, compute $I(A) = \int_{-A}^{A} \frac{dt}{1+t^2}$ and evaluate $\lim_{a \to \infty} I(A)$, the area under the graph of $\frac{1}{1+t^2}$ on $[-\infty, \infty]$.

Answer: $2 \tan^{-1}(A) \rightarrow \pi$ as $A \rightarrow \infty$

434. For $1 < B < \infty$, compute $I(B) = \int_{1}^{B} \frac{dt}{t\sqrt{t^2 - 1}}$ and evaluate $\lim_{B \to \infty} I(B)$, the area under the graph of $\frac{1}{t\sqrt{t^2 - 1}}$ over $[1, \infty)$. Answer: $\sec^{-1}(B) - \sec^{-1}(1) \to \frac{\pi}{2}$ as $B \to \infty$

435. Use the substitution
$$u = \sqrt{2} \cot x$$
 and the identity $1 + \cot^2 x = \csc^2 x$ to evaluate $\int \frac{dx}{1 + \cos^2 x}$. (*Hint:* Multiply the top and bottom of the integrand by $\csc^2 x$.))

Answer: Using the hint, one has $\int \frac{\csc^2 x}{\csc^2 x + \cot^2 x} dx = \int \frac{\csc^2 x}{1 + 2\cot^2 x} dx.$ Set $u = \sqrt{2} \cot x$. Then, $du = -\sqrt{2} \csc^2 x$ and the integral is $-\frac{1}{\sqrt{2}} \int \frac{du}{1 + u^2} = -\frac{1}{\sqrt{2}} \tan^{-1} u + C$ $= \frac{1}{\sqrt{2}} \tan^{-1} \left(\sqrt{2} \cot x\right) + C.$ If one uses the identity $\tan^{-1} s + \tan^{-1} \left(\frac{1}{s}\right) = \frac{\pi}{2}$, then this can also be written $\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{\tan x}{\sqrt{2}}\right) + C.$

436. **[T]** Approximate the points at which the graphs of $f(x) = 2x^2 - 1$ and $g(x) = (1 + 4x^2)^{-3/2}$ intersect, and approximate the area between their graphs accurate to three decimal places.

Answer: $x = \pm 0.763$. The left endpoint estimate with N = 100 gives the area 1.770 and these decimals stay the same for N = 500

437. **[T]** Approximate the points at which the graphs of $f(x) = x^2 - 1$ and $f(x) = x^2 - 1$

intersect, and approximate the area between their graphs accurate to three decimal places. Answer: $x \approx \pm 1.13525$. The left endpoint estimate with N = 100 is 2.796 and these decimals persist for N = 500.

438. Use the following graph to prove that $\int_{0}^{x} \sqrt{1-t^{2}} dt = \frac{1}{2}x\sqrt{1-x^{2}} + \frac{1}{2}\sin^{-1}x.$

Answer: The integral represents the area below the graph, which is the sum of the shaded areas. The triangle has area $1/2 x \sqrt{1-x^2}$. The area above is the area of a wedge subtended by the angle with sine equal to *x*.

Chapter Review Exercises

True or False. Justify your answer with a proof or a counterexample. Assume all functions f and g are continuous over their domains.

439. If f(x) > 0, $f^{\ell}(x) > 0$ for all *x*, then the right-hand rule underestimates the integral $\int_{a}^{b} f(x)$. Use a graph to justify your answer. Answer: False

440.
$$\int_{a}^{b} f(x)^{2} dx = \int_{a}^{b} f(x) dx \int_{a}^{b} f(x) dx$$
Answer: False

441. If
$$f(x) \le g(x)$$
 for all $x \in [a, b]$, then $\int_a^b f(x) \le \int_a^b g(x)$.
Answer: True

442. All continuous functions have an antiderivative. Answer: True

Evaluate the Riemann sums L_4 and R_4 for the following functions over the specified interval. Compare your answer with the exact answer, when possible, or use a calculator to determine the answer.

443. $y = 3x^2 - 2x + 1$ over [-1, 1]Answer: $L_4 = 5.25$, $R_4 = 3.25$, exact answer: 4

444. $y = \ln(x^2 + 1)$ over [0, e]Answer: $L_4 = 2.084$, $R_4 = 3.529$, exact answer: 2.782

445. $y = x^2 \sin x$ over $[0, \pi]$ Answer: $L_4 = 5.364$, $R_4 = 5.364$, exact answer: 5.870

446. $y = \sqrt{x} + \frac{1}{x}$ over [1, 4]

Answer: $L_4 = 5.989$, $R_4 = 6.177$, exact answer: $\frac{14}{3} + \ln(4)$)

Evaluate the following integrals.

447.
$$\int_{-1}^{1} (x^{3} - 2x^{2} + 4x) dx$$

Answer: $-\frac{4}{3}$
448.
$$\int_{0}^{4} \frac{3t}{\sqrt{1 + 6t^{2}}} dt$$

Answer: $\frac{1}{2} (\sqrt{97} - 1)$
449.
$$\int_{\pi/3}^{\pi/2} 2 \sec(2\theta) \tan(2\theta) d\theta$$

Answer: 1
450.
$$\int_{0}^{\pi/4} e^{\cos^{2} x} \sin x \cos dx$$

Answer: $\frac{1}{2} (e - \sqrt{e})$

Find the antiderivative.

$$451. \int \frac{dx}{(x+4)^3}$$
Answer: $-\frac{1}{2(x+4)^2} + C$

$$452. \int x \ln(x^2) dx$$
Answer: $\frac{x^2}{2} (\ln(x^2) - 1) + C$

$$453. \int \frac{4x^2}{\sqrt{1-x^6}} dx$$
Answer: $\frac{4}{3} \sin^{-1}(x^3) + C$

$$454. \int \frac{e^{2x}}{1+e^{4x}} dx$$

Answer:
$$\frac{1}{2} \tan^{-1} (e^{2x}) + C$$

Find the derivative.

The following problems consider the historic average cost per gigabyte of RAM on a computer.

Year	5-Year Change (\$)
1980	0
1985	-5,468,750
1990	-755,495
1995	-73,005
2000	-29,768
2005	-918
2010	-177

459. If the average cost per gigabyte of RAM in 2010 is \$12, find the average cost per gigabyte of RAM in 1980.

Answer: \$6,328,113

460. The average cost per gigabyte of RAM can be approximated by the function $C(t) = 8,500,000(0.65)^{t}$, where t is measured in years since 1980, and C is cost in US\$. Find the average cost per gigabyte of RAM for 1980 to 2010. Answer: \$657,716

Find the average cost of 1GB RAM for 2005 to 2010. 461. Answer: \$73.36

462. The velocity of a bullet from a rifle can be approximated by $v(t) = 6400t^2 - 6505t + 2686$, where t is seconds after the shot and v is the velocity measured in feet per second. This equation only models the velocity for the first halfsecond after the shot: $0 \le t \le 0.5$. What is the total distance the bullet travels in 0.5 sec? Answer: $\frac{19117}{24}$ ft, or 796.5 ft

463. What is the average velocity of the bullet for the first half-second? Answer: $\frac{19117}{12}$ ft/sec, or 1593 ft/sec

This file is copyright 2016, Rice University. All Rights Reserved.