Chapter 5

Integration

5.6. Integrals Involving Exponential and Logarithmic Functions

Section Exercises

In the following exercises, compute each indefinite integral.
320. $\int e^{2 x} d x$

Answer: $\frac{1}{2} e^{2 x}+C$
321. $\int e^{-3 x} d x$

Answer: $\frac{-1}{3} e^{-3 x}+C$
322. $\int 2^{x} d x$

Answer: $\frac{2^{x}}{\ln 2}+C$
323. $\int 3^{-x} d x$

Answer: $-\frac{3^{-x}}{\ln 3}+C$
324. $\int \frac{1}{2 x} d x$

Answer: $\frac{1}{2} \ln |x|+C$
325. $\int \frac{2}{x} d x$

Answer: $\ln \left(x^{2}\right)+C$
326. $\int \frac{1}{x^{2}} d x$

Answer: $-\frac{1}{x}+C$
327. $\int \frac{1}{\sqrt{x}} d x$

Answer: $2 \sqrt{x}+C$

In the following exercises, find each indefinite integral by using appropriate substitutions.

328. $\int \frac{\ln x}{x} d x$

Answer: $\frac{1}{2}(\ln x)^{2}+C$
329. $\int \frac{d x}{x(\ln x)^{2}}$

Answer: $-\frac{1}{\ln x}+C$
330. $\int \frac{d x}{x \ln x}(x>1)$

Answer: $\ln (\ln x)+C$
331. $\int \frac{d x}{x \ln x \ln (\ln x)}$

Answer: $\ln (\ln (\ln x))+C$
332. $\int \tan \theta d \theta$

Answer: $\ln |\sec \theta|+C$
333. $\int \frac{\cos x \quad x \sin x}{x \cos x} d x$

Answer: $\ln (x \cos x)+C$
334. $\int \frac{\ln (\sin x)}{\tan x} d x$

Answer: $\frac{1}{2}(\ln (\sin (x)))^{2}+C$
335. $\int \ln (\cos x) \tan x d x$

Answer: $-\frac{1}{2}(\ln (\cos (x)))^{2}+C$
336. $\int x e^{-x^{2}} d x$

Answer: $\frac{-e^{-x^{2}}}{2}+C$
337. $\int x^{2} e^{-x^{3}} d x$

Answer: $\frac{-e^{-x^{3}}}{3}+C$
338. $\int e^{\sin x} \cos x d x$

Answer: $e^{\sin x}+C$
339. $\int e^{\tan x} \sec ^{2} x d x$

Answer: $e^{\tan x}+C$
340. $\int e^{\ln x} \frac{d x}{x}$

Answer: $x+C$
341. $\int \frac{e^{\ln (1-t)}}{1-t} d t$

Answer: $t+C$
In the following exercises, verify by differentiation that $\int \ln x d x=x(\ln x-1)+C$, then use appropriate changes of variables to compute the integral.
342. $\int x \ln x d x\left(\right.$ Hint: $\left.\int x \ln x d x=\frac{1}{2} \int x \ln \left(x^{2}\right) d x ; x>0\right)$

Answer: $\frac{1}{4} x^{2}\left(\ln \left(x^{2}\right)-1\right)+C$
343. $\int x^{2} \ln ^{2} x d x$

Answer: $\frac{1}{9} x^{3}\left(\ln \left(x^{3}\right)-1\right)+C$
344. $\int \frac{\ln x}{x^{2}} d x$ (Hint: Set $\left.u=\frac{1}{x}.\right)$

Answer: $\frac{1}{x}\left(\ln \left(\frac{1}{x}\right)-1\right)+C$
345. $\int \frac{\ln x}{\sqrt{x}} d x$ (Hint: Set $u=\sqrt{x}$.)

Answer: $2 \sqrt{x}(\ln x-2)+C$
346. Write an integral to express the area under the graph of $y=\frac{1}{t}$ from $t=1$ to e^{x} and evaluate the integral.
Answer: $\int_{1}^{e^{x}} \frac{d t}{t}=\left.\ln t\right|_{1} ^{e^{x}}=\ln \left(e^{x}\right)-\ln 1=x$
347. Write an integral to express the area under the graph of $y=e^{t}$ between $t=0$ and $t=\ln x$, and evaluate the integral.
Answer: $\int_{0}^{\ln x} e^{t} d t=\left.e^{t}\right|_{0} ^{\ln x}=e^{\ln x}-e^{0}=x-1$
In the following exercises, use appropriate substitutions to express the trigonometric integrals in terms of compositions with logarithms.
348. $\int \tan (2 x) d x$

Answer: $-\frac{1}{2} \ln \cos (2 x)+C$
349. $\int \frac{\sin (3 x)-\cos (3 x)}{\sin (3 x)+\cos (3 x)} d x$

Answer: $-\frac{1}{3} \ln (\sin (3 x)+\cos (3 x))$
350. $\int \frac{x \sin \left(x^{2}\right)}{\cos \left(x^{2}\right)} d x$

Answer: $-\frac{1}{2} \ln \left(\cos \left(x^{2}\right)\right)+C$
351. $\int x \csc \left(x^{2}\right) d x$

Answer: $-\frac{1}{2} \ln \left|\csc \left(x^{2}\right)+\cot \left(x^{2}\right)\right|+C$
352. $\int \ln (\cos x) \tan x d x$

Answer: $-\frac{1}{2}(\ln (\cos x))^{2}+C$
353. $\int \ln (\csc x) \cot x d x$

Answer: $-\frac{1}{2}(\ln (\csc x))^{2}+C$
354. $\int \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} d x$

Answer: $\ln \left(e^{x}+e^{-x}\right)+C$
In the following exercises, evaluate the definite integral.
355. $\int_{1}^{2} \frac{1+2 x+x^{2}}{3 x+3 x^{2}+x^{3}} d x$

Answer: $\frac{1}{3} \ln \left(\frac{26}{7}\right)$
356. $\int_{0}^{\pi / 4} \tan x d x$

Answer: $\frac{\ln 2}{2}$
357. $\int_{0}^{\pi / 3} \frac{\sin x-\cos x}{\sin x+\cos x} d x$

Answer: $\ln (\sqrt{3}-1)$
358. $\int_{\pi / 6}^{\pi / 2} \csc x d x$

Answer: $-\ln (2-\sqrt{3})$
359. $\int_{\pi / 4}^{\pi / 3} \cot x d x$

Answer: $\frac{1}{2} \ln \frac{3}{2}$
In the following exercises, integrate using the indicated substitution.
360. $\int \frac{x}{x-100} d x ; u=x-100$

Answer: $x+100 \ln |x-100|+C$
361. $\int \frac{y-1}{y+1} d y ; u=y+1$

Answer: $y-2 \ln |y+1|+C$
362. $\int \frac{1-x^{2}}{3 x-x^{3}} d x ; u=3 x-x^{3}$

Answer: $\frac{1}{3} \ln \left(3 x-x^{3}\right)+C$
363. $\int \frac{\sin x+\cos x}{\sin x-\cos x} d x ; u=\sin x-\cos x$

Answer: $\ln |\sin x-\cos x|+C$
364. $\int e^{2 x} \sqrt{1-e^{2 x}} d x ; u=e^{2 x}$

Answer: $-\frac{1}{3}\left(1-e^{2 x}\right)^{3 / 2}+C$
365. $\int \ln (x) \frac{\sqrt{1-(\ln x)^{2}}}{x} d x ; u=\ln x$

Answer: $-\frac{1}{3}\left(1-\left(\ln x^{2}\right)\right)^{3 / 2}+C$
In the following exercises, does the right-endpoint approximation overestimate or underestimate the exact area? Calculate the right endpoint estimate R_{50} and solve for the exact area.
366. $[\mathbf{T}] y=e^{x}$ over $[0,1]$

Answer: Exact solution: $e-1, R_{50}=1.736$. Since f is increasing, the right endpoint estimate is an overestimate.
367. $[\mathbf{T}] y=e^{-x}$ over $[0,1]$

Answer: Exact solution: $\frac{e-1}{e}, R_{50}=0.6258$. Since f is decreasing, the right endpoint estimate underestimates the area.
368. [T] $y=\ln (x)$ over [1, 2]

Answer: Exact solution: $\ln (4)-1, R_{50}=0.3932$. Since f is increasing, the right endpoint estimate overestimates the area.
369.
$[\mathbf{T}] y=\frac{x+1}{x^{2}+2 x+6}$ over $[0,1]$
Answer: Exact solution: $\frac{2 \ln (3)-\ln (6)}{2}, R_{50}=0.2033$. Since f is increasing, the right endpoint estimate overestimates the area.
370. [T] $y=2^{x}$ over $[-1,0]$

Answer: Exact solution: $\frac{1}{\ln (4)}, R_{50}=0.7264$. Since f is increasing, the right endpoint estimate overestimates the area.
371. [T] $y=-2^{-x}$ over $[0,1]$

Answer: Exact solution: $-\frac{1}{\ln (4)}, R_{50}=-0.7164$. Since f is increasing, the right endpoint estimate overestimates the area (the actual area is a larger negative number).

In the following exercises, $f(x) \geq 0$ for $a \leq x \leq b$. Find the area under the graph of $f(x)$ between the given values \boldsymbol{a} and \boldsymbol{b} by integrating.
372. $f(x)=\frac{\log _{10}(x)}{x} ; a=10, b=100$

Answer: $\frac{3}{2} \ln (10)$
373. $f(x)=\frac{\log _{2}(x)}{x} ; a=32, b=64$

Answer: $\frac{11}{2} \ln 2$
374.

$$
f(x)=2^{-x} ; a=1, b=2
$$

Answer: $\frac{1}{\ln 16}$
375.

$$
f(x)=2^{-x} ; a=3, b=4
$$

Answer: $\frac{1}{\ln (65,536)}$
376. Find the area under the graph of the function $f(x)=x e^{-x^{2}}$ between $x=0$ and $x=5$.

Answer: $\frac{1}{2}\left(1-e^{-25}\right)$
377. Compute the integral of $f(x)=x e^{-x^{2}}$ and find the smallest value of N such that the area under the graph $f(x)=x e^{-x^{2}}$ between $x=N$ and $x=N+1$ is, at most, 0.01 .
Answer: $\int_{N}^{N+1} x e^{-x^{2}} d x=\frac{1}{2}\left(e^{-N^{2}}-e^{-(N+1)^{2}}\right)$. The quantity is less than 0.01 when $N=2$.
378. Find the limit, as N tends to infinity, of the area under the graph of $f(x)=x e^{-x^{2}}$ between $x=0$ and $x=5$.
Answer: $\lim _{N \rightarrow \infty} \frac{1}{2}\left(1-e^{-N^{2}}\right)=\frac{1}{2}$
379. Show that $\int_{a}^{b} \frac{d t}{t}=\int_{1 / b}^{1 / a} \frac{d t}{t}$ when $0<a \leq b$.

Answer: $\int_{a}^{b} \frac{d x}{x}=\ln (b)-\ln (a)=\ln \left(\frac{1}{a}\right)-\ln \left(\frac{1}{b}\right)=\int_{1 / b}^{1 / a} \frac{d x}{x}$
380. Suppose that $f(x)>0$ for all x and that f and g are differentiable. Use the identity $f^{g}=e^{g \ln f}$ and the chain rule to find the derivative of f^{g}.
Answer: $\frac{d}{d t} e^{g \ln f}=e^{g \ln f}\left(\frac{d g}{d t} \ln f+\frac{g}{f} \frac{d f}{d t}\right)$
381. Use the previous exercise to find the antiderivative of $h(x)=x^{x}(1+\ln x)$ and evaluate $\int_{2}^{3} x^{x}(1+\ln x) d x$
Answer: 23
382. Show that if $c>0$, then the integral of $1 / x$ from $a c$ to $b c(0<a<b)$ is the same as the integral of $1 / x$ from a to b.
Answer: $\int_{a c}^{a b} \frac{d x}{x}=\ln c b-\ln a c=\ln b-\ln a$
The following exercises are intended to derive the fundamental properties of the natural \log starting from the definition $\ln (x)=\int_{1}^{x} \frac{d t}{t}$, using properties of the definite integral and making no further assumptions.
383. Use the identity $\ln (x)=\int_{1}^{x} \frac{d t}{t}$ to derive the identity $\ln \left(\frac{1}{x}\right)=-\ln x$.

Answer: We may assume that $x>1$, so $\frac{1}{x}<1$. Then, $\int_{1}^{1 / x} \frac{d t}{t}$. Now make the substitution $u=\frac{1}{t}$, so $d u=-\frac{d t}{t^{2}}$ and $\frac{d u}{u}=-\frac{d t}{t}$, and change endpoints: $\int_{1}^{1 / x} \frac{d t}{t}=-\int_{1}^{x} \frac{d u}{u}=-\ln x$.
384. Use a change of variable in the integral $\int_{1}^{x y} \frac{1}{t} d t$ to show that $\ln x y=\ln x+\ln y$ for $x, y>0$.
Answer: Set $u=\frac{t}{y}$ so $d u=\frac{d t}{y}$ and $\int_{1}^{x y} \frac{1}{t}=\int_{u=1 / y}^{x} \frac{y d u}{y u}=\int_{u=1 / y}^{x} \frac{d u}{u}=\ln x-\ln \frac{1}{y}=\ln x+\ln y$.
385. Use the identity $\ln x=\int_{1}^{x} \frac{d t}{x}$ to show that $\ln (x)$ is an increasing function of x on $[0, \infty)$, and use the previous exercises to show that the range of $\ln (x)$ is $(-\infty, \infty)$. Without any further assumptions, conclude that $\ln (x)$ has an inverse function defined on $(-\infty, \infty)$. Answer: This is a proof; therefore, no answer is provided.
386. Pretend, for the moment, that we do not know that e^{x} is the inverse function of $\ln (x)$, but keep in mind that $\ln (x)$ has an inverse function defined on $(-\infty, \infty)$. Call it E. Use the identity $\ln x y=\ln x+\ln y$ to deduce that $E(a+b)=E(a) E(b)$ for any real numbers a, b. Answer: If $x=E(a)$ and $y=E(b)$, then $\ln x y=\ln (E(a) E(b))=\ln E(a)+\ln E(b)=a+b$. Taking E of both sides and using the inverse relation gives $E(\ln x y)=E(a+b)$, but $E(\ln x y)=x y=E(a) E(b)$, so $E(a) E(b)=E(a+b)$ as claimed.
387. Pretend, for the moment, that we do not know that e^{x} is the inverse function of $\ln x$, but keep in mind that $\ln x$ has an inverse function defined on $(-\infty, \infty)$. Call it E. Show that $E^{\prime}(t)=E(t)$.
Answer: $x=E(\ln (x))$. Then, $1=\frac{E^{\prime}(\ln x)}{x}$ or $x=E^{\prime}(\ln x)$. Since any number t can be written $t=\ln x$ for some x, and for such t we have $x=E(t)$, it follows that for any $t, E^{\prime}(t)=E(t)$.
388. The sine integral, defined as $S(x)=\int_{0}^{x} \frac{\sin t}{t} d t$ is an important quantity in engineering. Although it does not have a simple closed formula, it is possible to estimate its behavior for large x. Show that for $k \geq 1,|S(2 \pi k)-S(2 \pi(k+1))| \leq \frac{1}{k(2 k+1) \pi}$. (Hint:

$$
\sin (t+\pi)=-\sin t)
$$

Answer: $|S(2 \pi(k+1))-S(2 \pi k)|=\left|\int_{2 \pi k}^{2 \pi(k+1)} \frac{\sin t}{t} d t\right|=\left|\int_{2 \pi k}^{2 \pi(k+1)} \sin (t)\left(\frac{1}{t}-\frac{1}{t+\pi}\right) d t\right|$ using the hint.
Since $\sin t \geq 0$ over $[0, \pi]$, and the denominator is increasing in t, the integral is bounded by $\frac{\pi}{(2 k \pi)((2 k+1) \pi)} \int_{0}^{\pi} \sin t d t=\frac{1}{k(2 k+1) \pi}$, which was to be shown.
389. [$\mathbf{T}]$ The normal distribution in probability is given by $p(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$, where σ is the standard deviation and μ is the average. The standard normal distribution in probability, p_{s}, corresponds to $\mu=0$ and $\sigma=1$. Compute the right endpoint estimates R_{10} and R_{100} of $\int_{-1}^{1} \frac{1}{\sqrt{2 \pi}} e^{-x^{2 / 2}} d x$.
Answer: $R_{10}=0.6811, R_{100}=0.6827$

390. [$\mathbf{T}]$ Compute the right endpoint estimates R_{50} and R_{100} of $\int_{-3}^{5} \frac{1}{2 \sqrt{2 \pi}} e^{-(x-1)^{2} / 8}$.

Answer: $R_{50}=0.9544, R_{100}=0.9545$

This file is copyright 2016, Rice University. All Rights Reserved.

