Chapter 5 Integration 5.6. Integrals Involving Exponential and Logarithmic Functions

Section Exercises

In the following exercises, compute each indefinite integral.

320.
$$\int e^{2x} dx$$

Answer:
$$\frac{1}{2}e^{2x} + C$$

321.
$$\int e^{-3x} dx$$

Answer:
$$\frac{-1}{3}e^{-3x} + C$$

322.
$$\int 2^{x} dx$$

Answer:
$$\frac{2^{x}}{\ln 2} + C$$

323.
$$\int 3^{-x} dx$$

Answer:
$$-\frac{3^{-x}}{\ln 3} + C$$

324.
$$\int \frac{1}{2x} dx$$

Answer:
$$\frac{1}{2}\ln |x| + C$$

325.
$$\int \frac{2}{x} dx$$

Answer:
$$\ln (x^{2}) + C$$

326.
$$\int \frac{1}{x^{2}} dx$$

Answer:
$$-\frac{1}{x} + C$$

327.
$$\int \frac{1}{\sqrt{x}} dx$$

Answer:
$$2\sqrt{x} + C$$

In the following exercises, find each indefinite integral by using appropriate substitutions.

328.
$$\int \frac{\ln x}{x} dx$$

Answer:
$$\frac{1}{2} (\ln x)^{2} + C$$

329.
$$\int \frac{dx}{x(\ln x)^{2}}$$

Answer:
$$-\frac{1}{\ln x} + C$$

330.
$$\int \frac{dx}{x \ln x} (x > 1)$$

Answer:
$$\ln (\ln x) + C$$

331.
$$\int \frac{dx}{x \ln x \ln(\ln x)}$$

Answer:
$$\ln (\ln (\ln x)) + C$$

332.
$$\int \tan \theta \, d\theta$$

Answer:
$$\ln |\sec \theta| + C$$

333.
$$\int \frac{\cos x - x \sin x}{x \cos x} \, dx$$

Answer:
$$\ln (x \cos x) + C$$

334.
$$\int \frac{\ln (\sin x)}{\tan x} \, dx$$

Answer:
$$\frac{1}{2} (\ln (\sin (x)))^{2} + C$$

335.
$$\int \ln(\cos x) \tan x \, dx$$

Answer:
$$-\frac{1}{2} (\ln (\cos (x)))^{2} + C$$

336.
$$\int xe^{-x^{2}} \, dx$$

Answer:
$$\frac{-e^{-x^{2}}}{2} + C$$

337. $\int x^2 e^{-x^3} dx$ Answer: $\frac{-e^{-x^3}}{3} + C$ 338. $\int e^{\sin x} \cos x \, dx$ Answer: $e^{\sin x} + C$ 339. $\int e^{\tan x} \sec^2 x \, dx$ Answer: $e^{\tan x} + C$ 340. $\int e^{\ln x} \frac{dx}{x}$ Answer: x + C341. $\int \frac{e^{\ln(1-t)}}{1-t} dt$ Answer: t + C

In the following exercises, verify by differentiation that $\int \ln x \, dx = x(\ln x - 1) + C$, then use appropriate changes of variables to compute the integral.

342.
$$\int x \ln x dx \left(\text{Hint:} \int x \ln x dx = \frac{1}{2} \int x \ln (x^2) dx; x > 0 \right)$$

Answer:
$$\frac{1}{4} x^2 \left(\ln (x^2) - 1 \right) + C$$

343.
$$\int x^2 \ln^2 x dx$$

Answer:
$$\frac{1}{9} x^3 \left(\ln (x^3) - 1 \right) + C$$

344.
$$\int \frac{\ln x}{x^2} dx \text{ (Hint: Set } u = \frac{1}{x} \text{ .)}$$

Answer:
$$\frac{1}{x} \left(\ln\left(\frac{1}{x}\right) - 1 \right) + C$$

345.
$$\int \frac{\ln x}{\sqrt{x}} dx \quad (Hint: \text{ Set } u = \sqrt{x} .)$$

Answer: $2\sqrt{x} (\ln x - 2) + C$

346. Write an integral to express the area under the graph of $y = \frac{1}{t}$ from t = 1 to e^x and

evaluate the integral.

Answer:
$$\int_{1}^{e^{x}} \frac{dt}{t} = \ln t \Big|_{1}^{e^{x}} = \ln (e^{x}) - \ln 1 = x$$

347. Write an integral to express the area under the graph of $y = e^t$ between t = 0 and $t = \ln x$, and evaluate the integral.

Answer:
$$\int_{0}^{\ln x} e^{t} dt = e^{t} \Big|_{0}^{\ln x} = e^{\ln x} - e^{0} = x - 1$$

In the following exercises, use appropriate substitutions to express the trigonometric integrals in terms of compositions with logarithms.

348.
$$\int \tan(2x) dx$$

Answer: $-\frac{1}{2} \ln \cos(2x) + C$
349.
$$\int \frac{\sin(3x) - \cos(3x)}{\sin(3x) + \cos(3x)} dx$$

Answer: $-\frac{1}{3} \ln (\sin(3x) + \cos(3x))$
350.
$$\int \frac{x \sin(x^2)}{\cos(x^2)} dx$$

Answer: $-\frac{1}{2} \ln (\cos(x^2)) + C$
351.
$$\int x \csc(x^2) dx$$

Answer: $-\frac{1}{2} \ln |\csc(x^2) + \cot(x^2)| + C$
352.
$$\int \ln (\cos x) \tan x dx$$

Answer: $-\frac{1}{2} (\ln (\cos x))^2 + C$
353.
$$\int \ln (\csc x) \cot x dx$$

Answer: $-\frac{1}{2} (\ln (\csc x))^2 + C$

354.
$$\int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx$$

Answer: $\ln(e^x + e^{-x}) + C$

In the following exercises, evaluate the definite integral.

355.
$$\int_{1}^{2} \frac{1+2x+x^{2}}{3x+3x^{2}+x^{3}} dx$$
Answer:
$$\frac{1}{3} \ln\left(\frac{26}{7}\right)$$
356.
$$\int_{0}^{\pi/4} \tan x dx$$
Answer:
$$\frac{\ln 2}{2}$$
357.
$$\int_{0}^{\pi/3} \frac{\sin x - \cos x}{\sin x + \cos x} dx$$
Answer:
$$\ln\left(\sqrt{3}-1\right)$$
358.
$$\int_{\pi/6}^{\pi/2} \csc x dx$$
Answer:
$$-\ln\left(2-\sqrt{3}\right)$$
359.
$$\int_{\pi/4}^{\pi/3} \cot x dx$$
Answer:
$$\frac{1}{2} \ln \frac{3}{2}$$

In the following exercises, integrate using the indicated substitution.

360.
$$\int \frac{x}{x-100} dx$$
; $u = x-100$

Answer: $x + 100 \ln |x - 100| + C$

361.
$$\int \frac{y-1}{y+1} dy$$
; $u = y+1$
Answer: $y - 2\ln|y+1| + C$

362.
$$\int \frac{1-x^2}{3x-x^3} dx; \ u = 3x - x^3$$

Answer: $\frac{1}{3} \ln (3x - x^3) + C$

363.
$$\int \frac{\sin x + \cos x}{\sin x - \cos x} dx; \ u = \sin x - \cos x$$

Answer: $\ln |\sin x - \cos x| + C$

364.
$$\int e^{2x} \sqrt{1 - e^{2x}} dx$$
; $u = e^{2x}$
Answer: $-\frac{1}{3} (1 - e^{2x})^{3/2} + C$

365.
$$\int \ln(x) \frac{\sqrt{1 - (\ln x)^2}}{x} dx; u = \ln x$$

Answer: $-\frac{1}{3}(1-(\ln x^2))^{3/2}+C$

In the following exercises, does the right-endpoint approximation overestimate or underestimate the exact area? Calculate the right endpoint estimate *R*₅₀ and solve for the exact area.

366. **[T]**
$$y = e^x$$
 over [0, 1]

Answer: Exact solution: e-1, $R_{50} = 1.736$. Since *f* is increasing, the right endpoint estimate is an overestimate.

367. **[T]**
$$y = e^{-x}$$
 over $[0, 1]$

Answer: Exact solution: $\frac{e-1}{e}$, $R_{50} = 0.6258$. Since *f* is decreasing, the right endpoint estimate underestimates the area.

368. **[T]** $y = \ln(x)$ over [1, 2]

Answer: Exact solution: $\ln(4)-1$, $R_{50} = 0.3932$. Since *f* is increasing, the right endpoint estimate overestimates the area.

369. **[T]**
$$y = \frac{x+1}{x^2+2x+6}$$
 over $[0, 1]$
Answer: Exact solution: $\frac{2\ln(3) - \ln(6)}{2}$, $R_{50} = 0.2033$. Since *f* is increasing, the right endpoint estimate overestimates the area.

370. **[T]** $y = 2^x$ over $\begin{bmatrix} -1, & 0 \end{bmatrix}$ Answer: Exact solution: $\frac{1}{\ln(4)}$, $R_{50} = 0.7264$. Since *f* is increasing, the right endpoint estimate overestimates the area.

371. **[T]** $y = -2^{-x}$ over [0, 1]Answer: Exact solution: $-\frac{1}{\ln(4)}$, $R_{50} = -0.7164$. Since *f* is increasing, the right endpoint estimate overestimates the area (the actual area is a larger negative number).

In the following exercises, $f(x) \ge 0$ for $a \le x \le b$. Find the area under the graph of f(x) between the given values *a* and *b* by integrating.

372.
$$f(x) = \frac{\log_{10}(x)}{x}; a = 10, b = 100$$

Answer: $\frac{3}{2}\ln(10)$
373. $f(x) = \frac{\log_2(x)}{x}; a = 32, b = 64$
Answer: $\frac{11}{2}\ln 2$
374. $f(x) = 2^{-x}; a = 1, b = 2$
Answer: $\frac{1}{\ln 16}$
375. $f(x) = 2^{-x}; a = 3, b = 4$
Answer: $\frac{1}{\ln(65,536)}$

376. Find the area under the graph of the function $f(x) = xe^{-x^2}$ between x = 0 and x = 5. Answer: $\frac{1}{2}(1 - e^{-25})$

377. Compute the integral of $f(x) = xe^{-x^2}$ and find the smallest value of *N* such that the area under the graph $f(x) = xe^{-x^2}$ between x = N and x = N + 1 is, at most, 0.01.

Answer: $\int_{N}^{N+1} x e^{-x^2} dx = \frac{1}{2} \left(e^{-N^2} - e^{-(N+1)^2} \right)$. The quantity is less than 0.01 when N = 2.

378. Find the limit, as *N* tends to infinity, of the area under the graph of $f(x) = xe^{-x^2}$ between x = 0 and x = 5.

Answer: $\lim_{N \to \infty} \frac{1}{2} \left(1 - e^{-N^2} \right) = \frac{1}{2}$

379. Show that
$$\int_{a}^{b} \frac{dt}{t} = \int_{1/b}^{1/a} \frac{dt}{t} \text{ when } 0 < a \le b.$$

Answer:
$$\int_{a}^{b} \frac{dx}{x} = \ln(b) - \ln(a) = \ln\left(\frac{1}{a}\right) - \ln\left(\frac{1}{b}\right) = \int_{1/b}^{1/a} \frac{dx}{x}$$

380. Suppose that f(x) > 0 for all x and that f and g are differentiable. Use the identity $f^{g} = e^{g \ln f}$ and the chain rule to find the derivative of f^{g} .

Answer:
$$\frac{d}{dt}e^{g\ln f} = e^{g\ln f}\left(\frac{dg}{dt}\ln f + \frac{g}{f}\frac{df}{dt}\right)$$

381. Use the previous exercise to find the antiderivative of $h(x) = x^x (1 + \ln x)$ and evaluate $\int_2^3 x^x (1 + \ln x) dx$. Answer: 23

382. Show that if c > 0, then the integral of 1/x from *ac* to *bc* (0 < a < b) is the same as the integral of 1/x from *a* to *b*.

Answer: $\int_{ac}^{ab} \frac{dx}{x} = \ln cb - \ln ac = \ln b - \ln a$

The following exercises are intended to derive the fundamental properties of the natural log starting from the *definition* $\ln(x) = \int_{1}^{x} \frac{dt}{t}$, using properties of the definite integral and making no further assumptions.

383. Use the identity
$$\ln(x) = \int_{1}^{x} \frac{dt}{t}$$
 to derive the identity $\ln\left(\frac{1}{x}\right) = -\ln x$.
Answer: We may assume that $x > 1$, so $\frac{1}{x} < 1$. Then, $\int_{1}^{1/x} \frac{dt}{t}$. Now make the substitution $u = \frac{1}{t}$, so $du = -\frac{dt}{t^2}$ and $\frac{du}{u} = -\frac{dt}{t}$, and change endpoints: $\int_{1}^{1/x} \frac{dt}{t} = -\int_{1}^{x} \frac{du}{u} = -\ln x$.

384. Use a change of variable in the integral $\int_{1}^{xy} \frac{1}{t} dt$ to show that $\ln xy = \ln x + \ln y$ for x, y > 0.

Answer: Set
$$u = \frac{t}{y}$$
 so $du = \frac{dt}{y}$ and $\int_{1}^{xy} \frac{1}{t} = \int_{u=1/y}^{x} \frac{y du}{y u} = \int_{u=1/y}^{x} \frac{du}{u} = \ln x - \ln \frac{1}{y} = \ln x + \ln y.$

385. Use the identity $\ln x = \int_{1}^{x} \frac{dt}{x}$ to show that $\ln(x)$ is an increasing function of x on $[0, \infty)$, and use the previous exercises to show that the range of $\ln(x)$ is $(-\infty, \infty)$. Without any further assumptions, conclude that $\ln(x)$ has an inverse function defined on $(-\infty, \infty)$. Answer: This is a proof; therefore, no answer is provided.

- 386. Pretend, for the moment, that we do not know that e^x is the inverse function of ln(x), but keep in mind that ln(x) has an inverse function defined on (-∞, ∞). Call it *E*. Use the identity ln xy = ln x + ln y to deduce that E(a+b) = E(a)E(b) for any real numbers a, b.
 Answer: If x = E(a) and y = E(b), then ln xy = ln(E(a)E(b)) = ln E(a) + ln E(b) = a + b.
 Taking *E* of both sides and using the inverse relation gives E(ln xy) = E(a+b), but E(ln xy) = xy = E(a)E(b), so E(a)E(b) = E(a+b) as claimed.
- 387. Pretend, for the moment, that we do not know that e^x is the inverse function of $\ln x$, but keep in mind that $\ln x$ has an inverse function defined on $(-\infty, \infty)$. Call it *E*. Show that E'(t) = E(t).

Answer: $x = E(\ln(x))$. Then, $1 = \frac{E'(\ln x)}{x}$ or $x = E'(\ln x)$. Since any number *t* can be written $t = \ln x$ for some *x*, and for such *t* we have x = E(t), it follows that for any *t*, E'(t) = E(t).

388. The sine integral, defined as $S(x) = \int_0^x \frac{\sin t}{t} dt$ is an important quantity in engineering. Although it does not have a simple closed formula, it is possible to estimate its behavior for large *x*. Show that for $k \ge 1$, $\left|S(2\pi k) - S(2\pi (k+1))\right| \le \frac{1}{k(2k+1)\pi}$. (*Hint:* $\sin(t+\pi) = -\sin t$) OpenStax Calculus Volume 1

Answer:
$$\left|S\left(2\pi(k+1)\right) - S\left(2\pi k\right)\right| = \left|\int_{2\pi k}^{2\pi(k+1)} \frac{\sin t}{t} dt\right| = \left|\int_{2\pi k}^{2\pi(k+1)} \sin\left(t\right)\left(\frac{1}{t} - \frac{1}{t+\pi}\right) dt\right|$$
 using the hint.

Since $\sin t \ge 0$ over $[0, \pi]$, and the denominator is increasing in *t*, the integral is bounded by

$$\frac{\pi}{(2k\pi)((2k+1)\pi)} \int_0^{\pi} \sin t dt = \frac{1}{k(2k+1)\pi}, \text{ which was to be shown.}$$

389. **[T]** The normal distribution in probability is given by $p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$, where σ

is the standard deviation and μ is the average. The *standard normal distribution* in probability, p_s , corresponds to $\mu = 0$ and $\sigma = 1$. Compute the right endpoint estimates

$$R_{10}$$
 and R_{100} of $\int_{-1}^{1} \frac{1}{\sqrt{2\pi}} e^{-x^{2/2}} dx$.

390. **[T]** Compute the right endpoint estimates R_{50} and R_{100} of $\int_{-3}^{5} \frac{1}{2\sqrt{2\pi}} e^{-(x-1)^2/8}$.

This file is copyright 2016, Rice University. All Rights Reserved.