Chapter 5

Integration

5.2. The Definite Integral

Section Exercises

In the following exercises, express the limits as integrals.
60. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(x_{i}^{*}\right) \Delta x$ over $[1,3]$

Answer: $\int_{1}^{3} x d x$
61. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(5\left(x_{i}^{*}\right)^{2}-3\left(x_{i}^{*}\right)^{3}\right) \Delta x$ over $[0,2]$

Answer: $\int_{0}^{2}\left(5 x^{2}-3 x^{3}\right) d x$
62. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sin ^{2}\left(2 \pi x_{i}^{*}\right) \Delta x$ over $[0,1]$

Answer: $\int_{0}^{1} \sin ^{2}(2 \pi x) d x$
63. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \cos ^{2}\left(2 \pi x_{i}^{*}\right) \Delta x$ over $[0,1]$

Answer: $\int_{0}^{1} \cos ^{2}(2 \pi x) d x$
In the following exercises, given $\boldsymbol{L}_{\boldsymbol{n}}$ or $\boldsymbol{R}_{\boldsymbol{n}}$ as indicated, express their limits as $n \rightarrow \infty$ as definite integrals, identifying the correct intervals.
64. $L_{n}=\frac{1}{n} \sum_{i=1}^{n} \frac{i-1}{n}$

Answer: $\int_{0}^{1} x d x$
65. $\quad R_{n}=\frac{1}{n} \sum_{i=1}^{n} \frac{i}{n}$

Answer: $\int_{0}^{1} x d x$
66. $L_{n}=\frac{2}{n} \sum_{i=1}^{n}\left(1+2 \frac{i-1}{n}\right)$

Answer: $\int_{1}^{3} x d x$
67. $\quad R_{n}=\frac{3}{n} \sum_{i=1}^{n}\left(3+3 \frac{i}{n}\right)$

Answer: $\int_{3}^{6} x d x$
68. $L_{n}=\frac{2 \pi}{n} \sum_{i=1}^{n} 2 \pi \frac{i-1}{n} \cos \left(2 \pi \frac{i-1}{n}\right)$

Answer: $\int_{0}^{2 \pi} x \cos (x) d x$
69. $R_{n}=\frac{1}{n} \sum_{i=1}^{n}\left(1+\frac{i}{n}\right) \log \left(\left(1+\frac{i}{n}\right)^{2}\right)$

Answer: $\int_{1}^{2} x \log \left(x^{2}\right) d x$
In the following exercises, evaluate the integrals of the functions graphed using the formulas for areas of triangles and circles, and subtracting the areas below the \boldsymbol{x}-axis.
70.

Answer: $\frac{\pi(1+4+9)}{2}=7 \pi$

Answer: $1+2 \cdot 2+3 \cdot 3=14$

Answer: $\frac{\pi}{2}-4+\frac{9 \pi}{2}-4=5 \pi-4$
73.

Answer: $1-4+9=6$
74.

Answer: $\frac{(1-4+9) \pi}{2}=3 \pi$
75.

Answer: $1-2 \pi+9=10-2 \pi$

In the following exercises, evaluate the integral using area formulas.

76. $\int_{0}^{3}(3-x) d x$

Answer: The integral is the area under the graph, $\frac{9}{2}$.
77. $\int_{2}^{3}(3-x) d x$

Answer: The integral is the area of the triangle, $\frac{1}{2}$
78. $\int_{-3}^{3}(3-|x|) d x$

Answer: The integral is the area of the triangle, 9.
79. $\quad \int_{0}^{6}(3-|x-3|) d x$

Answer: The integral is the area of the triangle, 9.
80. $\int_{-2}^{2} \sqrt{4-x^{2}} d x$

Answer: The integral is the area $\frac{1}{2} \pi r^{2}=2 \pi$.
81. $\int_{1}^{5} \sqrt{4-(x-3)^{2}} d x$

Answer: The integral is the area $\frac{1}{2} \pi r^{2}=2 \pi$.
82. $\int_{0}^{12} \sqrt{36-(x-6)^{2}} d x$

Answer: The integral is the area $\frac{1}{2} \pi r^{2}=18 \pi$.
83. $\int_{-2}^{3}(3-|x|) d x$

Answer: The integral is the area of the "big" triangle less the "missing" triangle, $9-\frac{1}{2}$.
In the following exercises, use averages of values at the left (L) and right (R) endpoints to compute the integrals of the piecewise linear functions with graphs that pass through the given list of points over the indicated intervals.
84. $\{(0,0),(2,1),(4,3),(5,0),(6,0),(8,3)\}$ over $[0,8]$

Answer: $L=0+2+3+0+0=5, R=2+6+0+0+6=14, \frac{L+R}{2}=8.5$
85. $\{(0,2),(1,0),(3,5),(5,5),(6,2),(8,0)\}$ over $[0,8]$

Answer: $L=2+0+10+5+4=21, R=0+10+10+2+0=22, \frac{L+R}{2}=21.5$
86. $\{(-4,-4),(-2,0),(0,-2),(3,3),(4,3)\}$ over $[-4,4]$

Answer: $L=-8+0-6+3=-11, R=0-4+9+3=8, \frac{L+R}{2}=-\frac{3}{2}$
87. $\{(-4,0),(-2,2),(0,0),(1,2),(3,2),(4,0)\}$ over $[-4,4]$

Answer: $L=0+4+0+4+2=10, R=4+0+2+4+0=10, \frac{L+R}{2}=10$

Suppose that $\int_{0}^{4} f(x) d x=5$ and $\int_{0}^{2} f(x) d x=-3$, and $\int_{0}^{4} g(x) d x=-1$ and $\int_{0}^{2} g(x) d x=2$. In the following exercises, compute the integrals.
88. $\int_{0}^{4}(f(x)+g(x)) d x$

Answer: $\int_{0}^{4} f(x) d x+\int_{0}^{4} g(x) d x=5-1=4$
89. $\int_{2}^{4}(f(x)+g(x)) d x$

Answer: $\int_{2}^{4} f(x) d x+\int_{2}^{4} g(x) d x=8-3=5$
90. $\quad \int_{0}^{2}(f(x)-g(x)) d x$

Answer: $\int_{0}^{2} f(x) d x-\int_{0}^{2} g(x) d x=-3-2=-5$
91. $\int_{2}^{4}(f(x)-g(x)) d x$

Answer: $\int_{2}^{4} f(x) d x-\int_{2}^{4} g(x) d x=8+3=11$
92. $\int_{0}^{2}(3 f(x)-4 g(x)) d x$

Answer: $3 \int_{0}^{2} f(x) d x-4 \int_{0}^{2} g(x) d x=-9-8=-17$
93. $\int_{2}^{4}(4 f(x)-3 g(x)) d x$

Answer: $4 \int_{2}^{4} f(x) d x-3 \int_{2}^{4} g(x) d x=32+9=41$
In the following exercises, use the identity $\int_{-A}^{A} f(x) d x=\int_{-A}^{0} f(x) d x+\int_{0}^{A} f(x) d x$ to compute the integrals.
94. $\quad \int_{-\pi}^{\pi} \frac{\sin t}{1+t^{2}} d t$ (Hint: $\sin (-t)=-\sin (t)$)

Answer: The integrand is odd; the integral is zero.
95. $\int_{-\sqrt{\pi}}^{\sqrt{\pi}} \frac{t}{1+\cos t} d t$

Answer: The integrand is odd; the integral is zero.
96. $\quad \int_{1}^{3}(2-x) d x$ (Hint: Look at the graph of f.)

Answer: The signed area is zero because the graph produces two congruent triangles, one above the x-axis and the other below it.
97. $\quad \int_{2}^{4}(x-3)^{3} d x$ (Hint: Look at the graph of f.)

Answer: The integrand is antisymmetric with respect to $x=3$. The integral is zero.
In the following exercises, given that $\int_{0}^{1} x d x=\frac{1}{2}, \int_{0}^{1} x^{2} d x=\frac{1}{3}$, and $\int_{0}^{1} x^{3} d x=\frac{1}{4}$, compute the integrals.
98. $\int_{0}^{1}\left(1+x+x^{2}+x^{3}\right) d x$

Answer: $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{25}{12}$
99. $\int_{0}^{1}\left(1-x+x^{2}-x^{3}\right) d x$

Answer: $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}=\frac{7}{12}$
100. $\int_{0}^{1}(1-x)^{2} d x$

Answer: $\int_{0}^{1}\left(1-2 x+x^{2}\right) d x=1-1+\frac{1}{3}=\frac{1}{3}$
101. $\int_{0}^{1}(1-2 x)^{3} d x$

Answer: $\int_{0}^{1}\left(1-2 x+4 x^{2}-8 x^{3}\right) d x=1-1+\frac{4}{3}-2=-\frac{2}{3}$
102. $\int_{0}^{1}\left(6 x-\frac{4}{3} x^{2}\right) d x$

Answer: $6 \cdot \frac{1}{2}-\frac{4}{3} \cdot \frac{1}{3}=\frac{23}{9}$
103. $\int_{0}^{1}\left(7-5 x^{3}\right) d x$

Answer: $7-\frac{5}{4}=\frac{23}{4}$

In the following exercises, use the comparison theorem

104. Show that $\int_{0}^{3}\left(x^{2}-6 x+9\right) d x \geq 0$.

Answer: The integrand is $(x-3)^{2} \geq 0$.
105. Show that $\int_{-2}^{3}(x-3)(x+2) d x \leq 0$.

Answer: The integrand is negative over $[-2,3]$.
106. Show that $\int_{0}^{1} \sqrt{1+x^{3}} d x \leq \int_{0}^{1} \sqrt{1+x^{2}} d x$.

Answer: $x^{3} \leq x^{2}$ over $[0,1]$, so $\sqrt{1+x^{3}} \leq \sqrt{1+x^{2}}$ over $[0,1]$.
107. Show that $\int_{1}^{2} \sqrt{1+x} d x \leq \int_{1}^{2} \sqrt{1+x^{2}} d x$.

Answer: $x \leq x^{2}$ over $[1,2]$, so $\sqrt{1+x} \leq \sqrt{1+x^{2}}$ over [1,2] .
108. Show that $\int_{0}^{\pi / 2} \sin t d t \geq \frac{\pi}{4}$. (Hint: $\sin t \geq \frac{2 t}{\pi}$ over $\left[0, \frac{\pi}{2}\right]$)

Answer: Using the comparison theorem and $\frac{2}{\pi} \int_{0}^{\pi / 2} t d t=\frac{\pi}{4}$ gives the estimate.
109. Show that $\int_{-\pi / 4}^{\pi / 4} \cos t d t \geq \pi \sqrt{2} / 4$.

Answer: $\cos (t) \geq \frac{\sqrt{2}}{2}$. Multiply by the length of the interval to get the inequality.
In the following exercises, find the average value $f_{\text {ave }}$ of f between a and b, and find a point \boldsymbol{c}, where $f(c)=f_{\text {ave }}$.
110. $f(x)=x^{2}, a=1, b=1$

Answer: $f_{\text {ave }}=\frac{1}{3} ; c= \pm \frac{1}{\sqrt{3}}$
111. $f(x)=x^{5}, a=1, b=1$

Answer: $f_{\text {ave }}=0 ; c=0$
112. $f(x)=\sqrt{4-x^{2}}, a=0, b=2$

Answer: $\frac{\pi}{2}$ when $c= \pm \sqrt{4-\frac{\pi^{2}}{4}}$
113. $f(x)=(3-|x|), a=3, b=3$

Answer: $\frac{3}{2}$ when $c= \pm \frac{3}{2}$
114. $f(x)=\sin x, a=0, b=2$

Answer: $f_{\text {ave }}=0 ; c=0, \pi$
115. $f(x)=\cos x, a=0, b=2$

Answer: $f_{\text {ave }}=0 ; c=\frac{\pi}{2}, \frac{3 \pi}{2}$

In the following exercises, approximate the average value using Riemann sums L_{100} and \boldsymbol{R}_{100}. How does your answer compare with the exact given answer?
116. [$\mathbf{T}] y=\ln (x)$ over the interval $[1,4]$; the exact solution is $\frac{\ln (256)}{3}-1$.

Answer: $\frac{L_{100}}{3}=0.8414, \frac{R_{100}}{3}=0.8553$; the exact average is between these values.
117. [$\mathbf{T}] y=e^{x / 2}$ over the interval [0, 1]; the exact solution is $2(\sqrt{e}-1)$.

Answer: $L_{100}=1.294, R_{100}=1.301$; the exact average is between these values.
118. [T] $y=\tan x$ over the interval $\left[0, \frac{\pi}{4}\right]$; the exact solution is $\frac{2 \ln (2)}{\pi}$.

Answer: $L_{100} \times \frac{4}{\pi}=0.4363, R_{100} \times \frac{4}{\pi}=0.4463$; the exact average is between these values.
119. $[\mathbf{T}] y=\frac{x+1}{\sqrt{4-x^{2}}}$ over the interval $[-1,1]$; the exact solution is $\frac{\pi}{6}$.

Answer: $L_{100} \times\left(\frac{1}{2}\right)=0.5178, R_{100} \times\left(\frac{1}{2}\right)=0.5294$

In the following exercises, compute the average value using the left Riemann sums L_{N} for $N=1,10,100$. How does the accuracy compare with the given exact value?
120. [T] $y=x^{2}-4$ over the interval $[0,2]$; the exact solution is $-\frac{8}{3}$.

Answer: $L_{1} \times\left(\frac{1}{2}\right)=-2, L_{10} \times\left(\frac{1}{2}\right)=-2.86, L_{100} \times\left(\frac{1}{2}\right)=-2.687 . L_{100}$ is accurate in the first decimal digit.
121. $[\mathbf{T}] y=x e^{x^{2}}$ over the interval $[0,2]$; the exact solution is $\frac{1}{4}\left(e^{4}-1\right)$.

Answer: $L_{1}=0, L_{10} \times\left(\frac{1}{2}\right)=8.743493, L_{100} \times\left(\frac{1}{2}\right)=12.861728$. The exact answer ≈ 26.799, so L_{100} is not accurate.
122. $[\mathbf{T}] y=\left(\frac{1}{2}\right)^{x}$ over the interval $[0,4]$; the exact solution is $\frac{15}{64 \ln (2)}$.

Answer: $L_{1} \times\left(\frac{1}{4}\right)=1, L_{10} \times\left(\frac{1}{4}\right)=0.3872, L_{100} \times\left(\frac{1}{4}\right)=0.3428$. The exact answer ≈ 0.338, so L_{100} is not accurate to first decimal.
123. $[\mathbf{T}] y=x \sin \left(x^{2}\right)$ over the interval $[-\pi, 0]$; the exact solution is $\frac{\cos \left(\pi^{2}\right)-1}{2 \pi}$.

Answer: $L_{1} \times\left(\frac{1}{\pi}\right)=1.352, L_{10} \times\left(\frac{1}{\pi}\right)=-0.1837, L_{100} \times\left(\frac{1}{\pi}\right)=-0.2956$. The exact answer ≈-0.303, so L_{100} is not accurate to first decimal.
124. Suppose that $A=\int_{0}^{2 \pi} \sin ^{2} t d t$ and $B=\int_{0}^{2 \pi} \cos ^{2} t d t$. Show that $A+B=2 \pi$ and $A=B$. Answer: Use $\sin ^{2} \theta+1=\cos ^{2} \theta=1 . A=B$ follows because cosine is a shift of sine and the functions are 2π-periodic.
125. Suppose that $A=\int_{-\pi / 4}^{\pi / 4} \sec ^{2} t d t=\pi$ and $B=\int_{-\pi / 4}^{\pi / 4} \tan ^{2} t d t$. Show that $A-B=\frac{\pi}{2}$.

Answer: Use $\tan ^{2} \theta+1=\sec ^{2} \theta$. Then, $B-A=\int_{-\pi / 4}^{\pi / 4} 1 d x=\frac{\pi}{2}$.
126. Show that the average value of $\sin ^{2} t$ over $[0,2 \pi]$ is equal to $1 / 2$ Without further calculation, determine whether the average value of $\sin ^{2} t$ over $[0, \pi]$ is also equal to 1/2.
Answer: $\int_{0}^{2 \pi} \sin ^{2} t d t=\pi$, so divide by the length 2π of the interval. $\sin ^{2} t$ has period π, so yes, it is true.
127. Show that the average value of $\cos ^{2} t$ over $[0,2 \pi]$ is equal to $1 / 2$. Without further calculation, determine whether the average value of $\cos ^{2}(t)$ over $[0, \pi]$ is also equal to $1 / 2$
Answer: $\int_{0}^{2 \pi} \cos ^{2} t d t=\pi$, so divide by the length 2π of the interval. $\cos ^{2} t$ has period π, so yes, it is true.
128. Explain why the graphs of a quadratic function (parabola) $p(x)$ and a linear function $\ell(x)$ can intersect in at most two points. Suppose that $p(a)=\ell(a)$ and $p(b)=\ell(b)$, and that $\int_{a}^{b} p(t) d t>\int_{a}^{b} \ell(t) d t$. Explain why $\int_{c}^{d} p(t)>\int_{c}^{d} \ell(t) d t$ whenever $a \leq c<d \leq b$.
Answer: $p(x)-\ell(x)$ is quadratic, so it can have two roots at most. If $\int_{a}^{b} p(t) d t>\int_{a}^{b} \ell(t) d t$, then $p(x)>\ell(x)$ for some, and hence all, $x \in[a, b]$. The result follows from the comparison theorem.
129. Suppose that parabola $p(x)=a x^{2}+b x+c$ opens downward $(a<0)$ and has a vertex of $y=\frac{-b}{2 a}>0$. For which interval $[A, B]$ is $\int_{A}^{B}\left(a x^{2}+b x+c\right) d x$ as large as possible?
Answer: The integral is maximized when one uses the largest interval on which p is nonnegative.
Thus, $A=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$ and $B=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$.
130. Suppose $[a, b]$ can be subdivided into subintervals $a=a_{0}<a_{1}<a_{2}<\cdots<a_{N}=b$ such that either $f \geq 0$ over $\left[a_{i-1}, a_{i}\right]$ or $f \leq 0$ over $\left[a_{i-1}, a_{i}\right]$. Set $A_{i}=\int_{a_{i-1}}^{a_{i}} f(t) d t$.
a. Explain why ${ }_{a}^{b} f(t) d t=A_{1}+A_{2}+\cdots+A_{N}$.
b. Then, explain why $\left|\int_{a}^{b} f(t) d t\right| \leq \int_{a}^{b}|f(t)| d t$.

Answer: a. This is an extension of the identity $\int_{a}^{b} f(t) d t=\int_{a}^{c} f(t) d t+\int_{c}^{b} f(t) d t$ when $a<c<b$
. b. Then, the integral inequality follows from $A_{1}+\cdots+A_{N} \quad\left|A_{1}\right|+\cdots+\left|A_{N}\right|$.
131. Suppose f and g are continuous functions such that $\int_{c}^{d} f(t) d t \leq \int_{c}^{d} g(t) d t$ for every subinterval $[c, d]$ of $[a, b]$. Explain why $f(x) \leq g(x)$ for all values of x.
Answer: If $f\left(t_{0}\right)>g\left(t_{0}\right)$ for some $t_{0} \in[a, b]$, then since $f-g$ is continuous, there is an interval containing t_{0} such that $f(t)>g(t)$ over the interval $[c, d]$, and then
$\int_{d}^{d} f(t) d t>\int_{c}^{d} g(t) d t$ over this interval.
132. Suppose the average value of f over $[a, b]$ is 1 and the average value of f over $[b, c]$ is 1 where $a<c<b$. Show that the average value of f over $[a, c]$ is also 1 .
Answer: The integral of f over an interval is the same as the integral of the average of f over that interval. Thus, $\int_{a}^{b} f(t) d t=\int_{a}^{c} f(t) d t+\int_{c}^{b} f(t) d t=\int_{a}^{c} 1 d t+\int_{c}^{b} 1 d t=(c-a)+(b-c)=b-a$.
Dividing through by $b-a$ then gives the desired identity.
133. Suppose that $[a, b]$ can be partitioned. taking $a=a_{0}<a_{1}<\cdots<a_{N}=b$ such that the average value of f over each subinterval $\left[a_{i-1}, a_{i}\right]=1$ is equal to 1 for each $i=1, \cdots, N$. Explain why the average value of f over $[a, b]$ is also equal to 1 .
Answer: The integral of f over an interval is the same as the integral of the average of f over that interval. Thus,

$$
\begin{array}{rl}
{ }_{a}^{b} f(t) d t & ={ }_{a_{0}}^{a_{1}} f(t) d t+{ }_{a_{1}}^{a_{2}} f(t) d t+\cdots+{ }_{a_{N+1}}^{a_{N}} f(t) d t={ }_{a_{0}}^{a_{1}} 1 d t+{ }_{a_{1}}^{a_{2}} 1 d t+\cdots+{ }_{a_{N+1}}^{a_{N}} 1 d t \\
& =\left(\begin{array}{ll}
a_{1} & a_{0}
\end{array}\right)+\left(\begin{array}{ll}
a_{2} & a_{1}
\end{array}\right)+\cdots+\left(\begin{array}{lll}
a_{N} & a_{N 1}
\end{array}\right)=a_{N} \\
a_{0}=b & a .
\end{array}
$$

Dividing through by $b-a$ gives the desired identity.
134. Suppose that for each i such that $1 \leq i \leq N$ one has $\int_{i-1}^{i} f(t) d t=i$. Show that

$$
\int_{0}^{N} f(t) d t=\frac{N(N+1)}{2}
$$

Answer: $\int_{0}^{N} f(t) d t=\sum_{i=1}^{N} \int_{i-1}^{i} f(t) d t=\sum_{i=1}^{N} i=\frac{N(N+1)}{2}$
135. Suppose that for each i such that $1 \leq i \leq N$ one has $\int_{i-1}^{i} f(t) d t=i^{2}$. Show that

$$
\int_{0}^{N} f(t) d t=\frac{N(N+1)(2 N+1)}{6} .
$$

Answer: $\int_{0}^{N} f(t) d t=\sum_{i=1}^{N} \int_{i-1}^{i} f(t) d t=\sum_{i=1}^{N} i^{2}=\frac{N(N+1)(2 N+1)}{6}$
136. [T] Compute the left and right Riemann sums L_{10} and R_{10} and their average $\frac{L_{10}+R_{10}}{2}$ for $f(t)=t^{2}$ over $[0,1]$. Given that $\int_{0}^{1} t^{2} d t=0 . \overline{33}$, to how many decimal places is $\frac{L_{10}+R_{10}}{2}$ accurate?
Answer: $L_{10}=0.285, R_{10}=0.385, \frac{L_{10}+R_{10}}{2}=0.335$, so the estimate is accurate to two decimal places.
137. [$\mathbf{T}]$ Compute the left and right Riemann sums, L_{10} and R_{10}, and their average $\frac{L_{10}+R_{10}}{2}$ for $f(t)=\left(4-t^{2}\right)$ over $[1,2]$. Given that $\int_{1}^{2}\left(4-t^{2}\right) d t=1 . \overline{66}$, to how many decimal places is $\frac{L_{10}+R_{10}}{2}$ accurate?
Answer: $L_{10}=1.815, R_{10}=1.515, \frac{L_{10}+R_{10}}{2}=1.665$, so the estimate is accurate to two decimal places.
138. If $\int_{1}^{5} \sqrt{1+t^{4}} d t=41.7133 \ldots$, what is $\int_{1}^{5} \sqrt{1+u^{4}} d u$?

Answer: Since we only changed the name of the integration variable, the value of the integral is the same, 41.7133...
139. Estimate $\int_{0}^{1} t d t$ using the left and right endpoint sums, each with a single rectangle. How does the average of these left and right endpoint sums compare with the actual value $\int_{0}^{1} t d t ?$
Answer: The average is $1 / 2$, which is equal to the integral in this case.
140. Estimate $\int_{0}^{1} t d t$ by comparison with the area of a single rectangle with height equal to the value of t at the midpoint $t=\frac{1}{2}$. How does this midpoint estimate compare with the actual value $\int_{0}^{1} t d t ?$
Answer: The midpoint estimate is $1 / 2$, which is equal to the integral.
141. From the graph of $\sin (2 \pi x)$ shown:
a. Explain why $\int_{0}^{1} \sin (2 \pi t) d t=0$.
b. Explain why, in general, $\int_{a}^{a+1} \sin (2 \pi t) d t=0$ for any value of a.

Answer: a. The graph is antisymmetric with respect to $t=\frac{1}{2}$ over $[0,1]$, so the average value is zero. b. For any value of a, the graph between $[a, a+1]$ is a shift of the graph over $[0,1]$, so the net areas above and below the axis do not change and the average remains zero.
142. If f is 1-periodic $(f(t+1)=f(t))$, odd, and integrable over $[0,1]$, is it always true that

$$
\int_{0}^{1} f(t) d t=0 ?
$$

Answer: Yes, $\int_{-1 / 2}^{1 / 2} f=0$. Since f is 1 -periodic, the integral over any interval of length 1 is the same, hence equal to zero.
143. If f is 1-periodic and $\int_{0}^{1} f(t) d t=A$, is it necessarily true that $\int_{a}^{1+a} f(t) d t=A$ for all A ? Answer: Yes, the integral over any interval of length 1 is the same.

This file is copyright 2016, Rice University. All Rights Reserved.

