Chapter 4
 Applications of Derivatives 4.2 Linear Approximations and Differentials

Section Exercises

46. What is the linear approximation for any generic linear function $y=m x+b$?

Answer: $L(x)=m x+b$
47. Determine the necessary conditions such that the linear approximation function is constant. Use a graph to prove your result.
Answer: $f^{\prime}(a)=0$
48. Explain why the linear approximation becomes less accurate as you increase the distance between x and a. Use a graph to prove your argument.
Answer: Answers will vary
49. When is the linear approximation exact?

Answer: The linear approximation exact when $y=f(x)$ is linear or constant.
For the following exercises, find the linear approximation $L(x)$ to $y=f(x)$ near $x=a$ for the function.
50. $f(x)=x+x^{4}, a=0$

Answer: $L(x)=x$
51. $f(x)=\frac{1}{x}, a=2$

Answer: $L(x)=\frac{1}{2}-\frac{1}{4}(x-2)$
52. $f(x)=\tan x, a=\frac{\pi}{4}$

Answer: $L(x)=1+2\left(x-\frac{\pi}{4}\right)$
53. $f(x)=\sin x, a=\frac{\pi}{2}$

Answer: $L(x)=1$
54. $f(x)=x \sin x, a=2 \pi$

Answer: $L(x)=2 \pi(x-2 \pi)$
55. $f(x)=\sin ^{2} x, a=0$

Answer: $L(x)=0$
For the following exercises, compute the values given within $\mathbf{0 . 0 1}$ by deciding on the appropriate $f(x)$ and a, and evaluating $L(x)=f(a)+f^{\prime}(a)(x-a)$. Check your answer using a calculator.
56. $\quad[\mathrm{T}](2.001)^{6}$

Answer: 64.192
57. $[\mathbf{T}] \sin (0.02)$

Answer: 0.02
58. [T] $\cos (0.03)$

Answer: 1
59. $[\mathbf{T}](15.99)^{1 / 4}$

Answer: 1.9996875
60. $\quad[\mathrm{T}] \frac{1}{0.98}$

Answer: 1.02
61. $[\mathbf{T}] \sin (3.14)$

Answer: 0.001593

For the following exercises, determine the appropriate $f(x)$ and a, and evaluate $L(x)=f(a)+f^{\prime}(a)(x-a)$. Calculate the numerical error in the linear approximations that follow.
62. $[\mathbf{T}](1.01)^{3}$

Answer: 1.03; error, ~ 0.0003
63. $[\mathbf{T}] \cos (0.01)$

Answer: 1; error, ~0.00005
64. $\quad[\mathbf{T}](\sin (0.01))^{2}$

Answer: 0; error, ~0.0001
65. $[\mathbf{T}](1.01)^{-3}$

Answer: 0.97; error, ~0.0006
66. $[\mathbf{T}]\left(1+\frac{1}{10}\right)^{10}$

Answer: 2 ; error, ~ 0.6
67. $[T] \sqrt{8.99}$

Answer: $3-\frac{1}{600}$; error, $\sim 4.632 \times 10^{-7}$
For the following exercises, find the differential of the function.
68. $y=3 x^{4}+x^{2}-2 x+1$

Answer: $d y=\left(12 x^{3}+2 x-2\right) d x$
69. $y=x \cos x$

Answer: $d y=\left(\begin{array}{ll}\cos x & x \sin x\end{array}\right) d x$
70. $y=\sqrt{1+x}$

Answer: $d y=\left(\frac{1}{2 \sqrt{x+1}}\right) d x$
71. $y=\frac{x^{2}+2}{x-1}$

Answer: $d y=\left(\frac{x^{2}-2 x-2}{(x-1)^{2}}\right) d x$

For the following exercises, find the differential and evaluate for the given x and $d x$.
72. $y=3 x^{2}-x+6, x=2, d x=0.1$

Answer: $d y=(6 x-1) d x, 1.1$
73. $y=\frac{1}{x+1}, x=1, d x=0.25$

Answer: $d y=-\frac{1}{(x+1)^{2}} d x,-\frac{1}{16}$
74. $y=\tan x, x=0, d x=\frac{\pi}{10}$

Answer: $d y=\sec ^{2}(x) d x, \frac{\pi}{10}$
75. $y=\frac{3 x^{2}+2}{\sqrt{x+1}}, x=0, d x=0.1$

Answer: $d y=\frac{9 x^{2}+12 x-2}{2(x+1)^{3 / 2}} d x,-0.1$
76. $y=\frac{\sin (2 x)}{x}, x=\pi, d x=0.25$

Answer: $d y=\frac{2 x \cos (2 x)-\sin (2 x)}{x^{2}} d x, \frac{1}{2 \pi}$
77. $y=x^{3}+2 x+\frac{1}{x}, x=1, d x=0.05$

Answer: $d y=\left(3 x^{2}+2-\frac{1}{x^{2}}\right) d x, 0.2$

For the following exercises, find the change in volume $d V$ or in surface area $d A$.
78. $d V$ if the sides of a cube change from 10 to 10.1 .

Answer: 30
79. $d A$ if the sides of a cube change from x to $x+d x$.

Answer: $12 x d x$
80. $d A$ if the radius of a sphere changes from r by $d r$.

Answer: $8 \pi r d r$
81. $d V$ if the radius of a sphere changes from r by $d r$.

Answer: $4 \pi r^{2} d r$
82. $d V$ if a circular cylinder with $r=2$ changes height from 3 cm to 3.05 cm .

Answer: $0.2 \pi \mathrm{~cm}^{3}$
83. $d V$ if a circular cylinder of height 3 changes from $r=2$ to $r=1.9 \mathrm{~cm}$.

Answer: $-1.2 \pi \mathrm{~cm}^{3}$

For the following exercises, use differentials to estimate the maximum and relative error when computing the surface area or volume.
84. A spherical golf ball is measured to have a radius of 5 mm , with a possible measurement error of 0.1 mm . What is the possible change in volume?
Answer: $10 \pi \mathrm{~mm}^{3}$
85. A pool has a rectangular base of 10 ft by 20 ft and a depth of 6 ft . What is the change in volume if you only fill it up to 5.5 ft ?
Answer: $100 \mathrm{ft}^{3}$
86. An ice cream cone has height 4 in . and radius 1 in . If the cone is 0.1 in . thick, what is the difference between the volume of the cone, including the shell, and the volume of the ice cream you can fit inside the shell?
Answer: $\frac{4}{15} \pi \mathrm{in}^{3}$

For the following exercises, confirm the approximations by using the linear approximation at $x=0$.
87. $\sqrt{1-x} \approx 1-\frac{1}{2} x$
88. $\frac{1}{\sqrt{1 x^{2}}} 1$
89. $\sqrt{c^{2}+x^{2}} c$

This file is copyright 2016, Rice University. All Rights Reserved.

