Chapter 4
 Applications of Derivatives
 4.4 The Mean Value Theorem

Section Exercises

148. Why do you need continuity to apply the Mean Value Theorem? Construct a counterexample.
Answer: One example is $f(x)=\left\{\begin{array}{cc}\frac{1}{x^{2}} & -1 \leq x<0,0<x \leq 1 \\ 0 & x=0\end{array}\right.$
149. Why do you need differentiability to apply the Mean Value Theorem? Find a counterexample.
Answer: One example is $f(x)=|x|+3,-2 \quad x \quad 2$
150. When are Rolle's theorem and the Mean Value Theorem equivalent?

Answer: When $f(a)=f(b)$
151. If you have a function with a discontinuity, is it still possible to have $f^{\prime}(c)(b-a)=f(b)-f(a)$? Draw such an example or prove why not.
Answer: Yes, but the Mean Value Theorem still does not apply
For the following exercises, determine over what intervals (if any) the Mean Value Theorem applies. Justify your answer.'
152. $y=\sin (\pi x)$

Answer: $(-\infty, \infty)$
153. $y=\frac{1}{x^{3}}$

Answer: $(-\infty, 0),(0, \infty)$
154. $y=\sqrt{4-x^{2}}$

Answer: $(-2,2)$
155. $y=\sqrt{x^{2}-4}$

Answer: $(-\infty,-2),(2, \infty)$
156. $y=\ln (3 x-5)$

Answer: $\left(\frac{5}{3}, \infty\right)$
For the following exercises, graph the functions on a calculator and draw the secant line that connects the endpoints. Estimate the number of points c such that $f^{\prime}(c)(b-a)=f(b)-f(a)$.
157. $[\mathbf{T}] y=3 x^{3}+2 x+1$ over $[-1,1]$

Answer: 2 points
158. $[\mathbf{T}] y=\tan \left(\frac{\pi}{4} x\right)$ over $\left[-\frac{3}{2}, \frac{3}{2}\right]$

Answer: 2 points
159. [T] $y=x^{2} \cos (\pi x)$ over $[-2,2]$

Answer: 5 points
160. $[\mathbf{T}] y=x^{6}-\frac{3}{4} x^{5}-\frac{9}{8} x^{4}+\frac{15}{16} x^{3}+\frac{3}{32} x^{2}+\frac{3}{16} x+\frac{1}{32}$ over $[-1,1]$

Answer: 5 points
For the following exercises, use the Mean Value Theorem and find all points $0<c<2$ such that $f(2)-f(0)=f^{\prime}(c)(2-0)$.
161. $f(x)=x^{3}$

Answer: $c=\frac{2 \sqrt{3}}{3}$
162. $f(x)=\sin (\pi x)$

Answer: $c=\frac{1}{2}, \frac{3}{2}$
163.

$$
f(x)=\cos (2 \pi x)
$$

Answer: $c=\frac{1}{2}, 1, \frac{3}{2}$
164. $f(x)=1+x+x^{2}$

Answer: $c=1$
165. $f(x)=(x-1)^{10}$

Answer: $c=1$
166. $f(x)=(x-1)^{9}$

Answer: $c=1 \pm \frac{1}{\sqrt[4]{3}}$

For the following exercises, show there is no c such that $f(1)-f(-1)=f^{\prime}(c)(2)$. Explain why the Mean Value Theorem does not apply over the interval $[-1,1]$.
167. $f(x)=\left|x-\frac{1}{2}\right|$

Answer: Not differentiable
168. $f(x)=\frac{1}{x^{2}}$

Answer: Not continuous
169. $f(x)=\sqrt{|x|}$

Answer: Not differentiable
170. $f(x)=\lfloor x\rfloor$ (Hint: This is called the floor function and it is defined so that $f(x)$ is the largest integer less than or equal to x.)
Answer: Not continuous
For the following exercises, determine whether the Mean Value Theorem applies for the functions over the given interval $[a, b]$. Justify your answer.'
171. $y=e^{x}$ over $[0,1]$

Answer: Yes
172. $y=\ln (2 x+3)$ over $\left[-\frac{3}{2}, 0\right]$

Answer: Does not apply since $f(a)$ DNE
173. $f(x)=\tan (2 \pi x)$ over $[0,2]$

Answer: The Mean Value Theorem does not apply since the function is discontinuous at $x=\frac{1}{4}, \frac{3}{4}, \frac{5}{4}, \frac{7}{4}$.
174. $y=\sqrt{9-x^{2}}$ over $[-3,3]$

Answer: Yes
175. $y=\frac{1}{|x+1|}$ over $[0,3]$

Answer: Yes
176. $y=x^{3}+2 x+1$ over $[0,6]$

Answer: Yes
177. $y=\frac{x^{2}+3 x+2}{x}$ over $[-1,1]$

Answer: The Mean Value Theorem does not apply; discontinuous at $x=0$.
178. $y=\frac{x}{\sin (\pi x)+1}$ over $[0,1]$

Answer: Yes
179. $y=\ln (x+1)$ over [0,e-1]

Answer: Yes
180. $y=x \sin (\pi x)$ over $[0,2]$

Answer: Yes
181. $y=5+|x|$ over $[-1,1]$

Answer: The Mean Value Theorem does not apply; not differentiable at $x=0$.
For the following exercises, consider the roots of the equation.
182. Show that the equation $y=x^{3}+3 x^{2}+16$ has exactly one real root. What is it?

Answer: $x=-4$
183. Find the conditions for exactly one root (double root) for the equation $y=x^{2}+b x+c$ Answer: $b= \pm 2 \sqrt{c}$
184. Find the conditions for $y=e^{x}-b$ to have one root. Is it possible to have more than one root?
Answer: $b>0$, no

For the following exercises, use a calculator to graph the function over the interval $[a, b]$ and graph the secant line from a to b. Use the calculator to estimate all values of c as guaranteed by the Mean Value Theorem. Then, find the exact value of c, if possible, or write the final equation and use a calculator to estimate to four digits.
185. $[\mathbf{T}] y=\tan (\pi x)$ over $\left[-\frac{1}{4}, \frac{1}{4}\right]$

Answer: $c= \pm \frac{1}{\pi} \cos ^{-1}\left(\frac{\sqrt{\pi}}{2}\right), c= \pm 0.1533$
186. $[\mathbf{T}] y=\frac{1}{\sqrt{x+1}}$ over $[0,3]$

Answer: $c=3^{2 / 3}-1$
187. [T] $y=\left|x^{2}+2 x-4\right|$ over $[-4,0]$

Answer: The Mean Value Theorem does not apply.
188. [T] $y=x+\frac{1}{x}$ over $\left[\frac{1}{2}, 4\right]$

Answer: $c=\sqrt{2}$
189. $[\mathbf{T}] y=\sqrt{x+1}+\frac{1}{x^{2}}$ over $[3,8]$

Answer: $\frac{1}{2 \sqrt{c+1}}-\frac{2}{c^{3}}=\frac{521}{2880} ; c=3.133,5.867$
190. At 10:17 a.m., you pass a police car at 55 mph that is stopped on the freeway. You pass a second police car at 55 mph at 10:53 a.m., which is located 39 mi from the first police car. If the speed limit is 60 mph , can the police cite you for speeding?
Answer: Yes. Since your average speed was 65 mph , there was obviously somewhere within the 39 mi where you were driving more than 60 mph .
191. Two cars drive from one spotlight to the next, leaving at the same time and arriving at the same time. Is there ever a time when they are going the same speed? Prove or disprove.
Answer: Yes
192. Show that $y=\sec ^{2} x$ and $y=\tan ^{2} x$ have the same derivative. What can you say about

$$
y=\sec ^{2} x-\tan ^{2} x ?
$$

Answer: It is constant.
193. Show that $y=\csc ^{2} x$ and $y=\cot ^{2} x$ have the same derivative. What can you say about $y=\csc ^{2} x-\cot ^{2} x$?
Answer: It is constant.

This file is copyright 2016, Rice University. All Rights Reserved.

