Chapter 4
 Applications of Derivatives
 4.5 Derivatives and the Shape of a Graph

Section Exercises

194. If c is a critical point of $f(x)$, when is there no local maximum or minimum at c ? Explain.
Answer: If f^{\prime} does not change sign
195. For the function $y=x^{3}$, is $x=0$ both an inflection point and a local maximum/minimum?
Answer: It is not a local maximum/minimum because f^{\prime} does not change sign
196. For the function $y=x^{3}$, is $x=0$ an inflection point?

Answer: Yes
197. Is it possible for a point c to be both an inflection point and a local extrema of a twice differentiable function?
Answer: No
198. Why do you need continuity for the first derivative test? Come up with an example. Answer: A piecewise function
199. Explain whether a concave-down function has to cross $y=0$ for some value of x.

Answer: False; for example, $y=\sqrt{x}$.
200. Explain whether a polynomial of degree 2 can have an inflection point. Answer: No, the second derivative is constant so it cannot change signs

For the following exercises, analyze the graphs of f^{\prime}, then list all intervals where f is increasing or decreasing.
201.

Answer: Increasing for $-2<x<-1$ and $x>2$; decreasing for $x<-2$ and $-1<x<2$
202.

Answer: Decreasing for $x<-2,0<x<1$; increasing for $-2<x<0$ and $x>1$ 203.

Answer: Decreasing for $x<1$, increasing for $x>1$
204.

Answer: Increasing for all x
205.

Answer: Decreasing for $-2<x<-1$ and $1<x<2$; increasing for $-1<x<1$ and $x<-2$ and $x>2$

For the following exercises, analyze the graphs of f^{\prime}, then list all intervals where
a. f is increasing and decreasing and
b. the minima and maxima are located.
206.

Answer: a. Increasing over $x>-1$, decreasing over $x<-1$; b. minimum at $x=-1$
207.

Answer: a. Increasing over $-2<x<-1,0<x<1, x>2$, decreasing over $x<-2$, $-1<x<0,1<x<2$; b. maxima at $x=-1$ and $x=1$, minima at $x=-2$ and $x=0$ and $x=2$
208.

Answer: a. Increasing over $-2<x<2$, b. No local extrema
209.

Answer: a. Increasing over $x>0$, decreasing over $x<0$; b. Minimum at $x=0$
210.

Answer: a. Increasing over $x>-1$, decreasing over $x<-1$; b. Minimum at $x=-1$

For the following exercises, analyze the graphs of f^{\prime}, then list all inflection points and intervals f that are concave up and concave down.
211.

Answer: Concave up on all x, no inflection points
212.

Answer: Concave up for $x>0$, concave down for $x<0$, inflection point at $x=0$
213.

Answer: Concave up on all x, no inflection points
214.

Answer: Concave up for $x<0$ and $x>1$, concave down for $0<x<1$, inflection points at $x=0$ and $x=1$
215.

Answer: Concave up for $x<0$ and $x>1$, concave down for $0<x<1$, inflection points at $x=0$ and $x=1$

For the following exercises, draw a graph that satisfies the given specifications for the domain $x=[-3,3]$. The function does not have to be continuous or differentiable.
216. $f(x)>0, f^{\prime}(x)>0$ over $x>1,-3<x<0, f^{\prime}(x)=0$ over $0<x<1$

Answer: Answers will vary
217. $f^{\prime}(x)>0$ over $x>2,-3<x<-1, f^{\prime}(x)<0$ over $-1<x<2, f^{\prime \prime}(x)<0$ for all x Answer: Answers will vary
218. $f^{\prime \prime}(x)<0$ over $-1<x<1, f^{\prime \prime}(x)>0,-3<x<-1,1<x<3$, local maximum at $x=0$, local minima at $x= \pm 2$
Answer: Answers will vary
219. There is a local maximum at $x=2$, local minimum at $x=1$, and the graph is neither concave up nor concave down.
Answer: Answers will vary
220. There are local maxima at $x= \pm 1$, the function is concave up for all x, and the function remains positive for all x.
Answer: Answers will vary
For the following exercises, determine
a. intervals where f is increasing or decreasing and
b. local minima and maxima of f.
221.

$$
f(x)=\sin x+\sin ^{3} x \text { over }-\pi<x<\pi
$$

Answer: a. Increasing over $-\frac{\pi}{2}<x<\frac{\pi}{2}$, decreasing over $x<-\frac{\pi}{2}, x>\frac{\pi}{2}$. Local maximum at $x=\frac{\pi}{2} ;$ local minimum at $x=-\frac{\pi}{2}$
222.

$$
f(x)=x^{2}+\cos x
$$

Answer: a. Increasing over $x>0$, decreasing over $x<0$ b. Minimum at $x=0$

For the following exercises, determine a. intervals where f is concave up or concave down, and b. the inflection points of f.
223. $f(x)=x^{3}-4 x^{2}+x+2$

Answer: a. Concave up for $x>\frac{4}{3}$, concave down for $x<\frac{4}{3} \mathrm{~b}$. Inflection point at $x=\frac{4}{3}$

For the following exercises, determine
a. intervals where f is increasing or decreasing,
b. local minima and maxima of f,
c. intervals where f is concave up and concave down, and
d. the inflection points of f.
224. $f(x)=x^{2}-6 x$

Answer: a. Increasing over $x>3$, decreasing over $x<3 \mathrm{~b}$. Minimum at $x=3 \mathrm{c}$. Concave up over all x d. No inflection points
225. $f(x)=x^{3}-6 x^{2}$

Answer: a. Increasing over $x<0$ and $x>4$, decreasing over $0<x<4 \mathrm{~b}$. Maximum at $x=0$, minimum at $x=4 \mathrm{c}$. Concave up for $x>2$, concave down for $x<2 \mathrm{~d}$. Infection point at $x=2$
226. $f(x)=x^{4}-6 x^{3}$

Answer: a. Increasing over $x>4.5$, decreasing over $x<4.5 \mathrm{~b}$. Minimum at $x=4.5 \mathrm{c}$. Concave up for $x<0$ and $x>3$, concave down for $0<x<3 \mathrm{~d}$. Inflection points at $x=0, x=3$
227. $f(x)=x^{11}-6 x^{10}$

Answer: a. Increasing over $x<0$ and $x>\frac{60}{11}$, decreasing over $0<x<\frac{60}{11}$ b. Minimum at $x=\frac{60}{11}$ c. Concave down for $x<\frac{54}{11}$, concave up for $x>\frac{54}{11}$ d. Inflection point at $x=\frac{54}{11}$
228. $f(x)=x+x^{2}-x^{3}$

Answer: a. Increasing for $-\frac{1}{3}<x<1$, decreasing for $x>1, x<-\frac{1}{3} \mathrm{~b}$. Maximum at $x=1$, minimum at $x=-\frac{1}{3}$ c. Concave up for $x<\frac{1}{3}$, concave down for $x>\frac{1}{3} \mathrm{~d}$. Inflection point at $x=\frac{1}{3}$
229. $f(x)=x^{2}+x+1$

Answer: a. Increasing over $x>-\frac{1}{2}$, decreasing over $x<-\frac{1}{2}$ b. Minimum at $x=-\frac{1}{2}$ c. Concave up for all x d. No inflection points
230. $f(x)=x^{3}+x^{4}$

Answer: a. Increasing over $x>-\frac{3}{4}$, decreasing over $x<-\frac{3}{4}$ b. Minimum at $x=-\frac{3}{4}$ c. Concave up for $x<-\frac{1}{2}, x>0$; concave down for $-\frac{1}{2}<x<0$ d. Inflection points at $x=-\frac{1}{2}, x=0$

For the following exercises, determine

a. intervals where f is increasing or decreasing,
b. local minima and maxima of f,
c. intervals where f is concave up and concave down, and
d. the inflection points of f. Sketch the curve, then use a calculator to compare your answer. If you cannot determine the exact answer analytically, use a calculator.
231. [T] $f(x)=\sin (\pi x)-\cos (\pi x)$ over $x=[-1,1]$

Answer: a. Increases over $-\frac{1}{4}<x<\frac{3}{4}$, decreases over $x>\frac{3}{4}$ and $x<-\frac{1}{4}$ b. Minimum at $x=-\frac{1}{4}$, maximum at $x=\frac{3}{4}$ c. Concave up for $-\frac{3}{4}<x<\frac{1}{4}$, concave down for $x<-\frac{3}{4}$ and $x>\frac{1}{4}$ d. Inflection points at $x=-\frac{3}{4}, x=\frac{1}{4}$
232. [T] $f(x)=x+\sin (2 x)$ over $x=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Answer: a. Increasing over $-\frac{\pi}{3}<x<\frac{\pi}{3}$, decreasing over $-\frac{\pi}{2}<x<-\frac{\pi}{3}$ and $\frac{\pi}{3}<x<\frac{\pi}{2}$ b.
Minimum at $x=-\frac{\pi}{3}$, maximum at $x=\frac{\pi}{3}$ c. Concave up for $x<0$, concave down for $x>0 \mathrm{~d}$.
Inflection point at $x=0$
233. [$\mathbf{T}] f(x)=\sin x+\tan x$ over $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Answer: a. Increasing for all $x \mathrm{~b}$. No local minimum or maximum c. Concave up for $x>0$, concave down for $x<0 \mathrm{~d}$. Inflection point at $x=0$
234. [T] $f(x)=(x-2)^{2}(x-4)^{2}$

Answer: a. Increasing over $2<x<3, x>4$; decreasing over for $x<2,3<x<4$ b. Maximum at $x=3$, minima at $x=2$ and $x=4 \mathrm{c}$. Concave down for $\frac{1}{3}(9-\sqrt{3})<x<\frac{1}{3}(9+\sqrt{3})$, concave up for $x<\frac{1}{3}(9-\sqrt{3}), x>\frac{1}{3}(9+\sqrt{3})$ d. Inflection points at $x=\frac{1}{3}(9-\sqrt{3}), x=\frac{1}{3}(9+\sqrt{3})$
235.
[T] $f(x)=\frac{1}{1-x}, x \neq 1$
Answer: a. Increasing for all x where defined b . No local minima or maximac. Concave up for $x<1$; concave down for $x>1 \mathrm{~d}$. No inflection points in domain
236. $[\mathbf{T}] f(x)=\frac{\sin x}{x}$ over $x=[2 \pi, 0) \cup(0,2 \pi]$

Answer: a. Increasing over $x>4.493,-4.493<x<0$, decreasing over $0<x<4.493, x<-4.493$
b. No maximum, minima at $x= \pm 4.493$ c. Concave up for $2.082<x<5.940,-5.940<x<-2.082$; concave down for $-2.082<x<2.082, x>5.940, x<-5.940$ d. Inflection points at $x= \pm 5.940, x= \pm 2.082$
237. $f(x)=\sin (x) e^{x}$ over $x=[-\pi, \pi]$

Answer: a. Increasing over $-\frac{\pi}{4}<x<\frac{3 \pi}{4}$, decreasing over $x>\frac{3 \pi}{4}, x<-\frac{\pi}{4} \mathrm{~b}$. Minimum at $x=-\frac{\pi}{4}$, maximum at $x=\frac{3 \pi}{4}$ c. Concave up for $-\frac{\pi}{2}<x<\frac{\pi}{2}$, concave down for $x<-\frac{\pi}{2}, x>\frac{\pi}{2}$ d. Infection points at $x= \pm \frac{\pi}{2}$
238. $f(x)=\ln x \sqrt{x}, x>0$

Answer: a. Increasing over $x>\frac{1}{e^{2}}$, decreasing over $0<x<\frac{1}{e^{2}}$ b. Minimum at $x=\frac{1}{e^{2}}$ c.
Concave up for $0<x<1$, concave down for $x>1 \mathrm{~d}$. Inflection point at $x=1$
239. $f(x)=\frac{1}{4} \sqrt{x}+\frac{1}{x}, x>0$

Answer: a. Increasing over $x>4$, decreasing over $0<x<4 \mathrm{~b}$. Minimum at $x=4 \mathrm{c}$. Concave up for $0<x<8 \sqrt[3]{2}$, concave down for $x>8 \sqrt[3]{2}$ d. Inflection point at $x=8 \sqrt[3]{2}$
240. $f(x)=\frac{e^{x}}{x}, x \neq 0$

Answer: a. Decreasing for $x<0$ and $0<x<1$, increasing over $x>1 \mathrm{~b}$. Local minimum at $x=1$ c. Concave up for $x>0$, concave down for $x<0 \mathrm{~d}$. No inflection points

For the following exercises, interpret the sentences in terms of f, f^{\prime}, and $f^{\prime \prime}$.
241. The population is growing more slowly. Here f is the population.

Answer: $f>0, f^{\prime}>0, f^{\prime \prime}<0$
242. A bike accelerates faster, but a car goes faster. Here $f=$ Bike's position minus Car's position.
Answer: $f<0, f^{\prime}<0, f^{\prime \prime}>0$
243. The airplane lands smoothly. Here f is the plane's altitude.

Answer: $f>0, f^{\prime}<0, f^{\prime \prime}<0$
244. Stock prices are at their peak. Here f is the stock price.

Answer: $f>0, f^{\prime}=0, f^{\prime \prime}<0$
245. The economy is picking up speed. Here f is a measure of the economy, such as GDP. Answer: $f>0, f^{\prime}>0, f^{\prime \prime}>0$

For the following exercises, consider a third-degree polynomial $f(x)$, which has the properties $f^{\prime}(1)=0, f^{\prime}(3)=0$. Determine whether the following statements are true or false. Justify your answer.
246. $f(x)=0$ for some $1 \leq x \leq 3$

Answer: False, imagine $f(1)=1, f(3)=3$, and f increases for $1<x<3$
247. $f^{\prime \prime}(x)=0$ for some $1 \leq x \leq 3$

Answer: True, by the Mean Value Theorem
248. There is no absolute maximum at $x=3$

Answer: True, since $f(x)$ has an odd-degree leading term it has no absolute maximum.
249. If $f(x)$ has three roots, then it has 1 inflection point.

Answer: True, examine derivative
250. If $f(x)$ has one inflection point, then it has three real roots.

Answer: False, the function could have only one real root.

This file is copyright 2016, Rice University. All Rights Reserved.

