Chapter 4
 Applications of Derivatives
 4.6 Limits at Infinity and Asymptotes

Section Exercises

For the following exercises, examine the graphs. Identify where the vertical asymptotes are located.
251.

Answer: $x=1$
252.

Answer: $x=2, x=-3$
253.

Answer: $x=-1, x=2$
254.

Answer: $x=0, x=1, x=2$
255.

Answer: $x=0$
For the following functions $f(x)$, determine whether there is an asymptote at $x=a$. Justify your answer without graphing on a calculator.
256. $f(x)=\frac{x+1}{x^{2}+5 x+4}, a=-1$

Answer: No, there is a removable discontinuity
257. $f(x)=\frac{x}{x-2}, a=2$

Answer: Yes, there is a vertical asymptote
258. $f(x)=(x+2)^{3 / 2}, a=-2$

Answer: No
259. $f(x)=(x-1)^{-1 / 3}, a=1$

Answer: Yes, there is vertical asymptote
260. $f(x)=1+x^{-2 / 5}, a=1$

Answer: No, though there is one at $x=0$
For the following exercises, evaluate the limit.
261. $\lim _{x \rightarrow \infty} \frac{1}{3 x+6}$

Answer: 0
262. $\lim _{x \rightarrow \infty} \frac{2 x-5}{4 x}$

Answer: $\frac{1}{2}$
263. $\lim _{x \rightarrow \infty} \frac{x^{2}-2 x+5}{x+2}$

Answer: ∞
264. $\lim _{x \rightarrow-\infty} \frac{3 x^{3}-2 x}{x^{2}+2 x+8}$

Answer: $-\infty$
265. $\lim _{x \rightarrow-\infty} \frac{x^{4}-4 x^{3}+1}{2-2 x^{2}-7 x^{4}}$

Answer: $-\frac{1}{7}$
266. $\lim _{x \rightarrow \infty} \frac{3 x}{\sqrt{x^{2}+1}}$

Answer: 3
267. $\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}-1}}{x+2}$

Answer: -2
268. $\lim _{x \rightarrow \infty} \frac{4 x}{\sqrt{x^{2}-1}}$

Answer: 4
269. $\lim _{x \rightarrow-\infty} \frac{4 x}{\sqrt{x^{2}-1}}$

Answer: -4
270. $\lim _{x \rightarrow \infty} \frac{2 \sqrt{x}}{x-\sqrt{x}+1}$

Answer: o
For the following exercises, find the horizontal and vertical asymptotes.
271. $f(x)=x-\frac{9}{x}$

Answer: Horizontal: none, vertical: $x=0$
272. $f(x)=\frac{1}{1-x^{2}}$

Answer: Horizontal: $y=0$, vertical: $x= \pm 1$
273. $f(x)=\frac{x^{3}}{4-x^{2}}$

Answer: Horizontal: none, vertical: $x= \pm 2$
274. $f(x)=\frac{x^{2}+3}{x^{2}+1}$

Answer: Horizontal: $y=1$, vertical: none
275. $f(x)=\sin (x) \sin (2 x)$

Answer: Horizontal: none, vertical: none
276. $f(x)=\cos x+\cos (3 x)+\cos (5 x)$

Answer: Horizontal: none, vertical: none
277. $f(x)=\frac{x \sin (x)}{x^{2}-1}$

Answer: Horizontal: $y=0$, vertical: $x= \pm 1$
278. $f(x)=\frac{x}{\sin (x)}$

Answer: Horizontal: none, vertical: $x= \pm \pi n$ for all $n \neq 0$
279. $f(x)=\frac{1}{x^{3}+x^{2}}$

Answer: Horizontal: $y=0$, vertical: $x=0$ and $x=-1$
280. $f(x)=\frac{1}{x-1}-2 x$

Answer: Horizontal: none, vertical: $x=1$
281. $f(x)=\frac{x^{3}+1}{x^{3}-1}$

Answer: Horizontal: $y=1$, vertical: $x=1$
282. $f(x)=\frac{\sin x+\cos x}{\sin x-\cos x}$

Answer: Horizontal: none, vertical: $x=\frac{\pi}{4} \pm n \pi$ for all n
283. $f(x)=x-\sin x$

Answer: Horizontal: none, vertical: none
284. $f(x)=\frac{1}{x}-\sqrt{x}$

Answer: Horizontal: none, vertical: $x=0$
For the following exercises, construct a function $f(x)$ that has the given asymptotes.
285. $x=1$ and $y=2$

Answer: Answers will vary, for example: $y=\frac{2 x}{x-1}$
286. $x=1$ and $y=0$

Answer: Answers will vary, for example: $y=\frac{1}{(x-1)}$
287. $y=4, x=-1$

Answer: Answers will vary, for example: $y=\frac{4 x}{x+1}$
288. $x=0$

Answer: Answers will vary, for example: $y=\frac{1}{x}$

For the following exercises, graph the function on a graphing calculator on the window $x=[-5,5]$ and estimate the horizontal asymptote or limit. Then, calculate the actual horizontal asymptote or limit.
289.

$$
[\mathbf{T}] f(x)=\frac{1}{x+10}
$$

Answer: $y=0$
290. [T] $f(x)=\frac{x+1}{x^{2}+7 x+6}$

Answer: $y=0$
291. [T] $\lim _{x \rightarrow-\infty} x^{2}+10 x+25$

Answer: ∞
292.

$$
[\mathbf{T}] \lim _{x \rightarrow-\infty} \frac{x+2}{x^{2}+7 x+6}
$$

Answer: $y=0$
293. [T] $\lim _{x \rightarrow \infty} \frac{3 x+2}{x+5}$

Answer: $y=3$

For the following exercises, draw a graph of the functions without using a calculator. Be sure to notice all important features of the graph: local maxima and minima, inflection points, and asymptotic behavior.
294. $y=3 x^{2}+2 x+4$

Answer:

295. $y=x^{3}-3 x^{2}+4$

Answer:

296. $y=\frac{2 x+1}{x^{2}+6 x+5}$

Answer:

297. $y=\frac{x^{3}+4 x^{2}+3 x}{3 x+9}$

Answer:

298. $y=\frac{x^{2}+x-2}{x^{2}-3 x-4}$

Answer:

299. $y=\sqrt{x^{2}-5 x+4}$

Answer:

300. $y=2 x \sqrt{16-x^{2}}$

Answer:

301. $y=\frac{\cos x}{x}$, on $x=[-2 \pi, 2 \pi]$

Answer:

302. $y=e^{x}-x^{3}$

Answer:

303. $y=x \tan x, x=[-\pi, \pi]$

Answer:

304. $y=x \ln (x), x>0$

Answer:

305. $y=x^{2} \sin (x), x=[-2 \pi, 2 \pi]$

Answer:

306. For $f(x)=\frac{P(x)}{Q(x)}$ to have an asymptote at $y=2$ then the polynomials $P(x)$ and $Q(x)$ must have what relation?
Answer: The leading term of $P(x)$ is twice the leading term of $Q(x)$. And the leading terms of $P(x)$ and $Q(x)$. have the same degree.
307. For $f(x)=\frac{P(x)}{Q(x)}$ to have an asymptote at $x=0$, then the polynomials $P(x)$ and $Q(x)$. must have what relation?
Answer: $Q(x)$. must have x^{k+1} as a factor, where $P(x)$ has x^{k} as a factor.
308. If $f^{\prime}(x)$ has asymptotes at $y=3$ and $x=1$, then $f(x)$ has what asymptotes?

Answer: Nothing can be said about the asymptotes of $f(x)$
309. Both $f(x)=\frac{1}{(x-1)}$ and $g(x)=\frac{1}{(x-1)^{2}}$ have asymptotes at $x=1$ and $y=0$. What is the most obvious difference between these two functions?
Answer: $\lim _{x \rightarrow 1^{-}} f(x)$ and $\lim _{x \rightarrow 1^{-}} g(x)$
310. True or false: Every ratio of polynomials has vertical asymptotes.

Answer: False

This file is copyright 2016, Rice University. All Rights Reserved.

