Chapter 4 Applications of Derivatives 4.6 Limits at Infinity and Asymptotes

Section Exercises

For the following exercises, examine the graphs. Identify where the vertical asymptotes are located.

252.

Answer: x = 2, x = -3

Answer: x = -1, x = 2

255.

For the following functions f(x), determine whether there is an asymptote at x = a. Justify your answer without graphing on a calculator.

256.
$$f(x) = \frac{x+1}{x^2+5x+4}, a = -1$$

Answer: No, there is a removable discontinuity

257.
$$f(x) = \frac{x}{x-2}, a = 2$$

Answer: Yes, there is a vertical asymptote

258.
$$f(x) = (x+2)^{3/2}, a = -2$$

Answer: No

259. $f(x) = (x-1)^{-1/3}, a = 1$ Answer: Yes, there is vertical asymptote

260. $f(x) = 1 + x^{-2/5}, a = 1$ Answer: No, though there is one at x = 0

For the following exercises, evaluate the limit.

 $261. \quad \lim_{x \to \infty} \frac{1}{3x+6}$ Answer: 0 $262. \quad \lim_{x \to \infty} \frac{2x-5}{4x}$ Answer: $\frac{1}{2}$ 263. $\lim_{x \to \infty} \frac{x^2 - 2x + 5}{x + 2}$ Answer: ∞ 264. $\lim_{x \to -\infty} \frac{3x^3 - 2x}{x^2 + 2x + 8}$ Answer: −∞ 265. $\lim_{x \to -\infty} \frac{x^4 - 4x^3 + 1}{2 - 2x^2 - 7x^4}$ Answer: $-\frac{1}{7}$ 266. $\lim_{x \to \infty} \frac{3x}{\sqrt{x^2 + 1}}$ Answer: 3 $267. \qquad \lim_{x \to -\infty} \frac{\sqrt{4x^2 - 1}}{x + 2}$ Answer: -2 $268. \quad \lim_{x \to \infty} \frac{4x}{\sqrt{x^2 - 1}}$ Answer: 4

$$269. \qquad \lim_{x \to -\infty} \frac{4x}{\sqrt{x^2 - 1}}$$

Answer: -4

$$270. \quad \lim_{x \to \infty} \frac{2\sqrt{x}}{x - \sqrt{x} + 1}$$

Answer: 0

For the following exercises, find the horizontal and vertical asymptotes.

 $271. \quad f(x) = x - \frac{9}{x}$

Answer: Horizontal: none, vertical: x = 0

272.
$$f(x) = \frac{1}{1-x^2}$$

Answer: Horizontal: y = 0, vertical: $x = \pm 1$

273.
$$f(x) = \frac{x^3}{4 - x^2}$$

Answer: Horizontal: none, vertical: $x = \pm 2$

274.
$$f(x) = \frac{x^2 + 3}{x^2 + 1}$$

Answer: Horizontal: y = 1, vertical: none

 $275. \quad f(x) = \sin(x)\sin(2x)$

Answer: Horizontal: none, vertical: none

276. $f(x) = \cos x + \cos(3x) + \cos(5x)$ Answer: Horizontal: none, vertical: none

$$277. \quad f(x) = \frac{x\sin(x)}{x^2 - 1}$$

Answer: Horizontal: y = 0, vertical: $x = \pm 1$

$$278. \qquad f(x) = \frac{x}{\sin(x)}$$

Answer: Horizontal: none, vertical: $x = \pm \pi n$ for all $n \neq 0$

279.
$$f(x) = \frac{1}{x^3 + x^2}$$

Answer: Horizontal: y = 0, vertical: x = 0 and x = -1

280.
$$f(x) = \frac{1}{x-1} - 2x$$

Answer: Horizontal: none, vertical: x = 1

 $281. \quad f(x) = \frac{x^3 + 1}{x^3 - 1}$

Answer: Horizontal: y = 1, vertical: x = 1

282.
$$f(x) = \frac{\sin x + \cos x}{\sin x - \cos x}$$

Answer: Horizontal: none, vertical: $x = \frac{\pi}{4} \pm n\pi$ for all *n*

283.
$$f(x) = x - \sin x$$

Answer: Horizontal: none, vertical: none

284. $f(x) = \frac{1}{x} - \sqrt{x}$ Answer: Horizontal: none, vertical: x = 0

For the following exercises, construct a function f(x) that has the given asymptotes.

285.
$$x = 1$$
 and $y = 2$
Answer: Answers will vary, for example: $y = \frac{2x}{x-1}$

286. x = 1 and y = 0

Answer: Answers will vary, for example: $y = \frac{1}{(x-1)}$

287. y = 4, x = -1

Answer: Answers will vary, for example: $y = \frac{4x}{x+1}$

288. x = 0

Answer: Answers will vary, for example: $y = \frac{1}{x}$

For the following exercises, graph the function on a graphing calculator on the window x = [-5, 5] and estimate the horizontal asymptote or limit. Then, calculate the actual horizontal asymptote or limit.

289. **[T]**
$$f(x) = \frac{1}{x+10}$$

Answer: $y = 0$
290. **[T]** $f(x) = \frac{x+1}{x^2+7x+6}$
Answer: $y = 0$
291. **[T]** $\lim_{x \to -\infty} x^2 + 10x + 25$
Answer: ∞
292. **[T]** $\lim_{x \to -\infty} \frac{x+2}{x^2+7x+6}$
Answer: $y = 0$
293. **[T]** $\lim_{x \to \infty} \frac{3x+2}{x+5}$
Answer: $y = 3$

For the following exercises, draw a graph of the functions without using a calculator. Be sure to notice all important features of the graph: local maxima and minima, inflection points, and asymptotic behavior.

294.
$$y = 3x^2 + 2x + 4$$

Answer:

304. $y = x \ln(x), x > 0$

306. For $f(x) = \frac{P(x)}{Q(x)}$ to have an asymptote at y = 2 then the polynomials P(x) and Q(x) must have what relation?

Answer: The leading term of P(x) is twice the leading term of Q(x). And the leading terms of P(x) and Q(x), have the same degree.

307. For $f(x) = \frac{P(x)}{Q(x)}$ to have an asymptote at x = 0, then the polynomials P(x) and Q(x). must have what relation?

Answer: Q(x). must have x^{k+1} as a factor, where P(x) has x^k as a factor.

308. If f'(x) has asymptotes at y = 3 and x = 1, then f(x) has what asymptotes? Answer: Nothing can be said about the asymptotes of f(x)

309. Both $f(x) = \frac{1}{(x-1)}$ and $g(x) = \frac{1}{(x-1)^2}$ have asymptotes at x = 1 and y = 0. What is the

most obvious difference between these two functions? Answer: $\lim_{x \to 1^{-}} f(x)$ and $\lim_{x \to 1^{-}} g(x)$

310. True or false: Every ratio of polynomials has vertical asymptotes. Answer: False

This file is copyright 2016, Rice University. All Rights Reserved.