Chapter 3 Derivatives 3.1 Defining the Derivative

Section Exercises

For the following exercises, use Equation_03_01_03 to find the slope of the secant line between the values x_1 and x_2 for each function y = f(x).

1.
$$f(x) = 4x + 7; x_1 = 2, x_2 = 5$$

Answer: 4

2.
$$f(x) = 8x - 3; x_1 = -1, x_2 = 3$$

Answer: 8

3. $f(x) = x^2 + 2x + 1; x_1 = 3, x_2 = 3.5$ Answer: 8.5

4. $f(x) = -x^2 + x + 2; x_1 = 0.5, x_2 = 1.5$ Answer: -1

5.
$$f(x) = \frac{4}{3x-1}; x_1 = 1, x_2 = 3$$

Answer: $-\frac{3}{4}$

6.
$$f(x) = \frac{x-7}{2x+1}; x_1 = -2, x_2 = 0$$

Answer: 3

7.
$$f(x) = \sqrt{x}; x_1 = 1, x_2 = 16$$

Answer: 0.2

8.
$$f(x) = \sqrt{x-9}; x_1 = 10, x_2 = 13$$

Answer: $\frac{1}{3}$

9.
$$f(x) = x^{1/3} + 1; x_1 = 0, x_2 = 8$$

Answer: 0.25

10. $f(x) = 6x^{2/3} + 2x^{1/3}; x_1 = 1, x_2 = 27$ Answer: 2

For the following functions,

- a. use Equation_03_01_04 to find the slope of the tangent line $m_{tan} = f'(a)$, and
- **b.** find the equation of the tangent line to f at x = a.

11. f(x) = 3-4x, a = 2Answer: a. -4 b. y = 3-4x

12. $f(x) = \frac{x}{5} + 6, \ a = -1$

Answer: a. $\frac{1}{5}$ b. $y = \frac{x}{5} + 6$

13.
$$f(x) = x^2 + x, a = 1$$

Answer: a. 3 b. $y = 3x - 1$

14.
$$f(x) = 1 - x - x^2, a = 0$$

Answer: a. -1 b. $y = -x + 1$

15.
$$f(x) = \frac{7}{x}, a = 3$$

Answer: a. $\frac{-7}{9}$ b. $y = \frac{-7}{9}x + \frac{14}{3}$

16. $f(x) = \sqrt{x+8}, a = 1$ Answer: a. $\frac{1}{6}$ b. $y = \frac{1}{6}x + \frac{17}{6}$

17.
$$f(x) = 2 - 3x^2, a = -2$$

Answer: a. 12 b. $y = 12x + 14$

18.
$$f(x) = \frac{-3}{x-1}, a = 4$$

Answer: a. $\frac{1}{3}$ b. $y = \frac{1}{3}x - \frac{7}{3}$

19.
$$f(x) = \frac{2}{x+3}, a = -4$$

Answer: a. -2 b. y = -2x - 10

20. $f(x) = \frac{3}{x^2}, a = 3$]

Answer: a. $-\frac{2}{9}$ b. $y = -\frac{2}{9}x + 1$

For the following functions y = f(x), find f'(a) using Equation_03_01_03.

21. f(x) = 5x + 4, a = -1Answer: 5

22.
$$f(x) = -7x + 1, a = 3$$

Answer: -7

23. $f(x) = x^2 + 9x, a = 2$ Answer: 13

24. $f(x) = 3x^2 - x + 2, a = 1$ Answer: 5

25.
$$f(x) = \sqrt{x}, a = 4$$

Answer: $\frac{1}{4}$

26. $f(x) = \sqrt{x-2}, a = 6$ Answer: $\frac{1}{4}$

27. $f(x) = \frac{1}{x}, a = 2$ Answer: $-\frac{1}{4}$

28. $f(x) = \frac{1}{x-3}, a = -1$ Answer: $-\frac{1}{16}$

29.
$$f(x) = \frac{1}{x^3}, a = 1$$

Answer: -3

30.
$$f(x) = \frac{1}{\sqrt{x}}, a = 4$$

Answer: $-\frac{1}{16}$

For the following exercises, given the function y = f(x),

- a. find the slope of the secant line PQ for each point Q(x, f(x)) with x value given in the table.
- **b.** Use the answers from a. to estimate the value of the slope of the tangent line at *P*.
- c. Use the answer from b. to find the equation of the tangent line to f at point P.

X	Slope m_{PQ}	x	Slope m_{PQ}
1.1	(i)	0.9	(vii)
1.01	(ii)	0.99	(viii)
1.001	(iii)	0.999	(ix)
1.0001	(iv)	0.9999	(x)
1.00001	(v)	0.99999	(xi)
1.000001	(vi)	0.999999	(xii)

[T] $f(x) = x^2 + 3x + 4$, P(1,8) (Round to 6 decimal places.) 31.

Answer: a. (i) 5.100000, (ii) 5.010000, (iii) 5.001000, (iv) 5.000100, (v) 5.000010,

(vi) 5.000001, (vii) 4.900000, (viii) 4.990000, (ix) 4.999000, (x) 4.999900,

(xi) 4.999990, (x) 4.999999 b. $m_{tan} = 5$ c. y = 5x + 3

32. [T] $f(x) = \frac{x+1}{x^2-1}, P(0,-1)$				
x	Slope m_{PQ}	x	Slope m_{PQ}	
0.1	(i)	-0.1	(vii)	
0.01	(ii)	-0.01	(viii)	
0.001	(iii)	-0.001	(ix)	
0.0001	(iv)	-0.0001	(x)	
0.00001	(v)	-0.00001	(xi)	
0.000001	(vi)	-0.000001	(xii)	

 $r \pm 1$

Answer: a. (i) -1.111111, (ii) -1.010101, (iii) -1.001001, (iv) -1.000100, (v) -1.000010, (vi) -1.000001, (vii) -0.909090, (viii) -0.990099, (ix) -0.999001, (x) -0.999900, (xi) -0.999990, (xii)-0.999999 b. $m_{tan} = -1$ c. y = -x-1

33. **[T]** $f(x) = 10e^{0.5x}$, P(0,10) (Round to 4 decimal places.)

x	Slope m_{PQ}
-0.1	(i)
-0.01	(ii)
-0.001	(iii)
-0.0001	(iv)
-0.00001	(v)
-0.000001	(vi)

Answer: a. (i) 4.8771, (ii) 4.9875, (iii) 4.9988, (iv) 4.9999, (v) 4.9999, (vi) 4.9999 b. $m_{tan} = 5$ c. y = 5x + 10

34.	[T]	$f(x) = \tan x$	(x), P	$(\pi, 0)$
-----	-----	-----------------	--------	------------

U	
x	Slope m_{PQ}
3.1	(i)
3.14	(ii)
3.141	(iii)
3.1415	(iv)
3.14159	(v)
3.141592	(vi)

Answer: a. (i)1.0006, (ii) 1, (iii)1, (iv)1, (v)1, (vi) 1 b. $m_{tan} = 1$ c. $y = x - \pi$

[T] For the following position functions y = s(t), an object is moving along a straight line, where t is in seconds and s is in meters. Find

- a. the simplified expression for the average velocity from t = 2 to t = 2 + h;
- **b.** the average velocity between t = 2 and t = 2 + h, where (i) h = 0.1, (ii) h = 0.01, (iii) h = 0.001, and (iv) h = 0.0001; and
- c. use the answer from a. to estimate the instantaneous velocity at t = 2 second.

35.
$$s(t) = \frac{1}{3}t + 5$$

Answer: a. $\frac{1}{3}$; b. (i) $0.\overline{3}$ m/s, (ii) $0.\overline{3}$ m/s, (iii) $0.\overline{3}$ m/s, (iv) $0.\overline{3}$ m/s; c. $0.\overline{3} = \frac{1}{3}$ m/s

$$36. \qquad s(t) = t^2 - 2t$$

Answer: a. (h+2); b. (i) 2.1 m/s, (ii) 2.01 m/s, (iii) 2.001 m/s, (iv) 2.0001 m/s; c. 2 m/s

37.
$$s(t) = 2t^3 + 3$$

Answer: a. $2(h^2 + 6h + 12)$; b. (i) 25.22 m/s, (ii) 24.12 m/s, (iii) 24.01 m/s, (iv) 24 m/s; c. 24 m/s

38. $s(t) = \frac{16}{t^2} - \frac{4}{t}$ Answer: a. $-\frac{2(h+6)}{(h+2)^2}$; b. (i) -2.7664 m/s, (ii) -2.9752 m/s, (iii) -2.9975 m/s, (iv) -2.9998 m/s; c. -3 m/s

39. Use the following graph to evaluate a. f'(1) and b. f'(6).

Answer: a.1.25; b. 0.5

40. Use the following graph to evaluate a. f'(-3) and b. f'(1.5).

Answer: a. 0; b. 2

For the following exercises, use the limit definition of derivative to show that the derivative does not exist at x = a for each of the given functions.

41.
$$f(x) = x^{1/3}, x = 0$$

Answer: $\lim_{x \to 0^{-}} \frac{x^{1/3} - 0}{x - 0} = \lim_{x \to 0^{-}} \frac{1}{x^{2/3}} = \infty$

42. $f(x) = x^{2/3}, x = 0$

Answer: $\lim_{x \to 0^-} \frac{x^{2/3} - 0}{x - 0} = \lim_{x \to 0^-} \frac{1}{x^{1/3}} = -\infty$

43. $f(x) = \begin{cases} 1, x < 1 \\ x, x \ge 1 \end{cases}, x = 1$

Answer: $\lim_{x \to 1^{-}} \frac{1-1}{x-1} = 0 \neq 1 = \lim_{x \to 1^{+}} \frac{x-1}{x-1}$

44.
$$f(x) = \frac{|x|}{x}, x = 0$$

Answer: $\lim_{x \to 0^{-}} \frac{|x|}{x} = -1 \neq 1 = \lim_{x \to 0^{+}} \frac{|x|}{x}$

- 45. **[T]** The position in feet of a race car along a straight track after t seconds is modeled by the function $s(t) = 8t^2 \frac{1}{16}t^3$.
 - a. Find the average velocity of the vehicle over the following time intervals to four decimal places:
 - (i) [4, 4.1] (ii) [4, 4.01] (iii)[4, 4.001] (iv)[4, 4.0001]
 - b. Use a to draw a conclusion about the instantaneous velocity of the vehicle at t = 4 seconds.

Answer: a. (i) 61.7244 ft/s, (ii) 61.0725 ft/s (iii) 61.0072 ft/s (iv) 61.0007 ft/s b. At 4 seconds the race car is traveling at a rate/velocity of 61 ft/s

- 46. **[T]** The distance in feet that a ball rolls down an incline is modeled by the function $s(t) = 14t^2$, where *t* is seconds after the ball begins rolling.
 - a. Find the average velocity of the ball over the following time intervals:
 - (i) [5, 5.1]
 - (ii) [5, 5.01]
 - (iii)[5, 5.001]
 - (iv)[5, 5.0001]
 - b. Use the answers from a. to draw a conclusion about the instantaneous velocity of the ball at t = 5 seconds.

Answer: a. (i) 141 ft/s, (ii) 140.14 ft/s, (iii) 140.014 ft/s, (iv) 140.0014 ft/s b. The ball is traveling at a rate/velocity of 140 ft/s at t = 5 seconds.

47. Two vehicles start out traveling side by side along a straight road. Their position functions, shown in the following graph, are given by s = f(t) and s = g(t), where s is measured in feet and t is measured in seconds.

- a. Which vehicle has traveled farther at t = 2 seconds?
- b. What is the approximate velocity of each vehicle at t = 3 seconds?
- c. Which vehicle is traveling faster at t = 4 seconds?
- d. What is true about the positions of the vehicles at t = 4 seconds?

Answer: a. The vehicle represented by f(t), because it has traveled 2 feet, whereas g(t) has traveled 1 foot. b. The velocity of f(t) is constant at 1 ft/s, while the velocity of g(t) is approximately 2 ft/s. c. The vehicle represented by g(t), with a velocity of approximately 4 ft/s. d. Both have traveled 4 feet in 4 seconds

- 48. **[T]** The total cost C(x), in hundreds of dollars, to produce x jars of mayonnaise is given by
- $C(x) = 0.000003x^3 + 4x + 300.$
 - a. Calculate the average cost per jar over the following intervals:
 - (i) [100, 100.1]
 (ii) [100, 100.01]
 (iii) [100, 100.001]
 (iv) [100, 100.0001]

b. Use the answers from a. to estimate the average cost to produce 100 jars of mayonnaise. Answer: a. (i) \$4.09, (ii) \$4.09, (iii) \$4.09, (iv) \$4.09 b. \$4.09

- 49. **[T]** For the function $f(x) = x^3 2x^2 11x + 12$, do the following.
 - a. Use a graphing calculator to graph f in an appropriate viewing window.
 - b. Use the ZOOM feature on the calculator to approximate the two values of x = a for which $m_{tan} = f'(a) = 0$.

Answer: a.

b. *a* ≈ −1.361,2.694

50. **[T]** For the function $f(x) = \frac{x}{1+x^2}$, do the following.

- a. Use a graphing calculator to graph f in an appropriate viewing window.
- b. Use the ZOOM feature on the calculator to approximate the values of x = a for which $m_{tan} = f'(a) = 0$.

Answer: a.

b. x = 1, -1

- 51. Suppose that N(x) computes the number of gallons of gas used by a vehicle traveling x miles. Suppose the vehicle gets 30 mpg.
 - a. Find a mathematical expression for N(x).
 - b. (b)What is N(100)? Explain the physical meaning.
 - c. What is N'(100)? Explain the physical meaning.

Answer: a. $N(x) = \frac{x}{30}$ b. \Box 3.3 gallons. When the vehicle travels 100 miles, it has used 3.3 gallons of gas. c. $\frac{1}{30}$. The rate of gas consumption in gallons per mile that the vehicle is achieving after having traveled 100 miles.

- 52. **[T]** For the function $f(x) = x^4 5x^2 + 4$, do the following.
 - a. Use a graphing calculator to graph f in an appropriate viewing window.
 - b. Use the nDeriv function, which numerically finds the derivative, on a graphing calculator to estimate f'(-2), f'(-0.5), f'(1.7), and f'(2.718).

b. -12, 4.5, 2.65, 53.14

- 53. **[T]** For the function $f(x) = \frac{x^2}{x^2 + 1}$, do the following.
 - a. Use a graphing calculator to graph f in an appropriate viewing window.
 - b. Use the nDeriv function on a graphing calculator to find f'(-4), f'(-2), f'(2), and f'(4).

 $b. \ -0.028, \ -0.16, \ 0.16, \ 0.028$

This file is copyright 2016, Rice University. All Rights Reserved.