Chapter 3

Derivatives

3.5 Derivatives of Trigonometric Functions

Section Exercises

For the following exercises, find $\frac{d y}{d x}$ for the given functions.
175. $y=x^{2}-\sec x+1$

Answer: $\frac{d y}{d x}=2 x-\sec x \tan x$
176. $y=3 \csc x+\frac{5}{x}$

Answer: $\frac{d y}{d x}=-3 \csc x \cot x-\frac{5}{x^{2}}$
177. $y=x^{2} \cot x$

Answer: $\frac{d y}{d x}=2 x \cot x-x^{2} \csc ^{2} x$
178. $y=x-x^{3} \sin x$

Answer: $\frac{d y}{d x}=1-3 x^{2} \sin x-x^{3} \cos x$
179. $y=\frac{\sec x}{x}$

Answer: $\frac{d y}{d x}=\frac{x \sec x \tan x-\sec x}{x^{2}}$
180. $y=\sin x \tan x$

Answer: $\frac{d y}{d x}=\cos x \tan x+\sin x \sec ^{2} x$
181. $y=(x+\cos x)(1-\sin x)$

Answer: $\frac{d y}{d x}=(1-\sin x)(1-\sin x)-\cos x(x+\cos x)$
182. $y=\frac{\tan x}{1-\sec x}$

Answer: $\frac{d y}{d x}=\frac{(1-\sec x) \sec ^{2} x+\sec x^{2} \tan ^{2} x}{(1-\sec x)^{2}}$
183. $y=\frac{1-\cot x}{1+\cot x}$

Answer: $\frac{d y}{d x}=\frac{2 \csc ^{2} x}{(1+\cot x)^{2}}$
184. $y=\cos x(1+\csc x)$

Answer: $\frac{d y}{d x}=-\sin x(1+\csc x)-\cos x \csc x \cot x=-\sin x-$
For the following exercises, find the equation of the tangent line to each of the given functions at the indicated values of x. Then use a calculator to graph both the function and the tangent line to ensure the equation for the tangent line is correct.
185. [T] $f(x)=-\sin x, x=0$

Answer: $y=-x$

186. [T] $f(x)=\csc x, x=\frac{\pi}{2}$

Answer: $y=1$

187. [T] $f(x)=1+\cos x, x=\frac{3 \pi}{2}$

Answer: $y=x+\frac{2-3 \pi}{2}$

188. [T] $f(x)=\sec x, x=\frac{\pi}{4}$

Answer: $y=\sqrt{2} x+\frac{\sqrt{2}(4-\pi)}{4}$

189. [T] $f(x)=x^{2}-\tan x, x=0$

Answer: $y=-x$

190. [T] $f(x)=5 \cot x, x=\frac{\pi}{4}$

Answer: $y=5+\frac{5 \pi}{2}-10 x$

For the following exercises, find $\frac{d^{2} y}{d x^{2}}$ for the given functions.
191. $y=x \sin x-\cos x$

Answer: $3 \cos x-x \sin x$
192. $y=\sin x \cos x$

Answer: $-4 \sin x \cos x$
193. $y=x-\frac{1}{2} \sin x$

Answer: $\frac{1}{2} \sin x$
194. $y=\frac{1}{x}+\tan x$

Answer: $2 \sec ^{2} x \tan x+\frac{2}{x^{3}}$
195. $y=2 \csc x$

Answer: $2 \csc x\left(\csc ^{2} x+\cot ^{2} x\right)$
196. $y=\sec ^{2} x$

Answer: $2 \sec ^{4} x+4 \sec ^{2} x \tan ^{2} x$
197. Find all x values on the graph of $f(x)=-3 \sin x \cos x$ where the tangent line is horizontal.
Answer: $\frac{(2 n+1) \pi}{4}$, where n is an integer
198. Find all x values on the graph of $f(x)=x-2 \cos x$ for $0<x<2 \pi$ where the tangent line has slope 2 .
Answer: $\frac{\pi}{6}, \frac{5 \pi}{6}$
199. Let $f(x)=\cot x$. Determine the points on the graph of f for $0<x<2 \pi$ where the tangent line(s) is (are) parallel to the line $y=-2 x$.
Answer: $\left(\frac{\pi}{4}, 1\right),\left(\frac{3 \pi}{4},-1\right)$
200. [T] A mass on a spring bounces up and down in simple harmonic motion, modeled by the function $s(t)=-6 \cos t$ where s is measured in inches and t is measured in seconds.
Find the rate at which the spring is oscillating at $t=5 \mathrm{~s}$.
Answer: $6 \sin (5) \sim-5.754 \mathrm{in} . / \mathrm{s}$
201. Let the position of a swinging pendulum in simple harmonic motion be given by $s(t)=a \cos t+b \sin t$ where a and b are constants, t measures time in seconds, and s measures position in centimeters. If the position is 0 cm and velocity is $3 \mathrm{~cm} / \mathrm{s}$ when $t=$ 0 , find the values of a and b.
Answer: $a=0, b=3$
202. After a diver jumps off a diving board, the edge of the board oscillates with position given by $s(t)=-5 \cos t \mathrm{~cm}$ at t seconds after the jump.
a. Sketch one period of the position function for $t \geq 0$.
b. Find the velocity function.
c. Sketch one period of the velocity function for $t \geq 0$.
d. Determine the times when the velocity is 0 over one period.
e. Find the acceleration function. Answer:
f. Sketch one period of the acceleration function for $t \geq 0$.

Answer: a.

b. $v(t)=5 \sin t$
c.

d. $0, \pi, 2 \pi$ e. $a(t)=5 \cos t$ f.

203. The number of hamburgers sold at a fast-food restaurant in Pasadena, California, is given by $y=10+5 \sin x$ where y is the number of hamburgers sold and x represents the number of hours after the restaurant opened at $11 \mathrm{a} . \mathrm{m}$. until $11 \mathrm{p} . \mathrm{m}$., when the store closes. Find y^{\prime} and determine the intervals where the number of burgers being sold is increasing.
Answer: $y^{\prime}=5 \cos (x)$, increasing on $\left(0, \frac{\pi}{2}\right),\left(\frac{3 \pi}{2}, \frac{5 \pi}{2}\right)$, and $\left(\frac{7 \pi}{2}, 12\right)$
204. [T] The amount of rainfall per month in Phoenix, Arizona, can be approximated by $y(t)=0.5+0.3 \cos t$, where t is months since January. Find y^{\prime} and use a calculator to determine the intervals where the amount of rain falling is decreasing.
Answer: $y^{\prime}(t)=-0.3 \sin t$, decreasing on $(0, \pi)$ and $(2 \pi, 3 \pi)$

For the following exercises, use the quotient rule to derive the given equations.
205. $\frac{d}{d x}(\cot x)=-\csc ^{2} x$

Answer: This is a proof; therefore, no answer is provided.
206. $\frac{d}{d x}(\sec x)=\sec x \tan x$

Answer: This is a proof; therefore, no answer is provided
207. $\frac{d}{d x}(\csc x)=-\csc x \cot x$

Answer: This is a proof; therefore, no answer is provided
208. Use the definition of derivative and the identity $\cos (x+h)=\cos x \cos h-\sin x \sin h$ to

$$
\text { prove that } \frac{d(\cos x)}{d x}=-\sin x .
$$

Answer: This is a proof; therefore, no answer is provided
For the following exercises, find the requested higher-order derivative for the given functions.
209. $\frac{d^{3} y}{d x^{3}}$ of $y=3 \cos x$

Answer: $3 \sin x$
210. $\frac{d^{2} y}{d x^{2}}$ of $y=3 \sin x+x^{2} \cos x$

Answer: $y=-\left(x^{2}-2\right) \cos x-(4 x+3) \sin x$
211. $\frac{d^{4} y}{d x^{4}}$ of $y=5 \cos x$

Answer: $5 \cos x$
212. $\frac{d^{2} y}{d x^{2}}$ of $y=\sec x+\cot x$

Answer: $\sec ^{3} x+\tan ^{2}(x) \sec (x)+2 \cot (x) \csc ^{2}(x)$
213. $\frac{d^{3} y}{d x^{3}}$ of $y=x^{10}-\sec x$

Answer: $720 x^{7}-5 \tan (x) \sec ^{3}(x)-\tan ^{3}(x) \sec (x)$

This file is copyright 2016, Rice University. All Rights Reserved.

