Chapter 3

Derivatives
3.3 Differentiation Rules

Section Exercises

For the following exercises, find $f^{\prime}(x)$ for each function.
106. $f(x)=x^{7}+10$

Answer: $f^{\prime}(x)=7 x^{6}$
107. $f(x)=5 x^{3}-x+1$

Answer: $f^{\prime}(x)=15 x^{2}-1$
108. $f(x)=4 x^{2}-7 x$

Answer: $f^{\prime}(x)=8 x-7$
109. $f(x)=8 x^{4}+9 x^{2}-1$

Answer: $f^{\prime}(x)=32 x^{3}+18 x$
110. $f(x)=x^{4}+\frac{2}{x}$

Answer: $f^{\prime}(x)=4 x^{3}-\frac{2}{x^{2}}$
111. $f(x)=3 x\left(18 x^{4}+\frac{13}{x+1}\right)$

Answer: $f^{\prime}(x)=270 x^{4}+\frac{39}{(x+1)^{2}}$
112. $f(x)=(x+2)\left(2 x^{2}-3\right)$

Answer: $f^{\prime}(x)=6 x^{2}+8 x-3$
113. $f(x)=x^{2}\left(\frac{2}{x^{2}}+\frac{5}{x^{3}}\right)$

Answer: $f^{\prime}(x)=\frac{-5}{x^{2}}$
114. $f(x)=\frac{x^{3}+2 x^{2}-4}{3}$

Answer: $f^{\prime}(x)=x^{2}+\frac{4}{3} x$
115. $f(x)=\frac{4 x^{3}-2 x+1}{x^{2}}$

Answer: $f^{\prime}(x)=\frac{4 x^{4}+2 x^{2}-2 x}{x^{4}}$
116. $f(x)=\frac{x^{2}+4}{x^{2}-4}$

Answer: $f^{\prime}(x)=\frac{-16 x}{\left(x^{2}-4\right)^{2}}$
117. $f(x)=\frac{x+9}{x^{2}-7 x+1}$

Answer: $f^{\prime}(x)=\frac{-x^{2}-18 x+64}{\left(x^{2}-7 x+1\right)^{2}}$

For the following exercises, find the equation of the tangent line $T(x)$ to the graph of the given function at the indicated point. Use a graphing calculator to graph the function and the tangent line.
118. [T] $y=3 x^{2}+4 x+1$ at $(0,1)$

Answer:

$T(x)=4 x+1$
119. $[\mathbf{T}] y=2 \sqrt{x}+1$ at $(4,5)$

Answer:

$T(x)=\frac{1}{2} x+3$
120. $[\mathbf{T}] y=\frac{2 x}{x-1}$ at $(-1,1)$

Answer:

$T(x)=-\frac{1}{2} x+\frac{1}{2}$
121. [T] $y=\frac{2}{x}-\frac{3}{x^{2}}$ at $(1,-1)$

Answer:

$T(x)=4 x-5$

For the following exercises, assume that $f(x)$ and $g(x)$ are both differentiable functions for all x. Find the derivative of each of the functions $h(x)$.
122. $h(x)=4 f(x)+\frac{g(x)}{7}$

Answer: $h^{\prime}(x)=4 f^{\prime}(x)+\frac{g^{\prime}(x)}{7}$
123. $h(x)=x^{3} f(x)$

Answer: $h^{\prime}(x)=3 x^{2} f(x)+x^{3} f^{\prime}(x)$
124. $h(x)=\frac{f(x) g(x)}{2}$

Answer: $h^{\prime}(x)=\frac{1}{2}\left(f^{\prime}(x) g(x)+g^{\prime}(x) f(x)\right)$
125. $h(x)=\frac{3 f(x)}{g(x)+2}$

Answer: $h^{\prime}(x)=\frac{3 f^{\prime}(x)(g(x)+2)-3 f(x) g^{\prime}(x)}{(g(x)+2)^{2}}$

For the following exercises, assume that $f(x)$ and $g(x)$ are both differentiable functions with values as given in the following table. Use the following table to calculate the following derivatives.

\boldsymbol{x}	1	2	3	4
$\boldsymbol{f}(\boldsymbol{x})$	3	5	-2	0
$\boldsymbol{g}(\boldsymbol{x})$	2	3	-4	6
$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	-1	7	8	-3
$\boldsymbol{g}^{\prime}(\boldsymbol{x})$	4	1	2	9

126. Find $h^{\prime}(1)$ if $h(x)=x f(x)+4 g(x)$.

Answer: 18
127. Find $h^{\prime}(2)$ if $h(x)=\frac{f(x)}{g(x)}$.

Answer: $\frac{16}{9}$
128. Find $h^{\prime}(3)$ if $h(x)=2 x+f(x) g(x)$.

Answer: -34
129. Find $h^{\prime}(4)$ if $h(x)=\frac{1}{x}+\frac{g(x)}{f(x)}$.

Answer: Undefined
For the following exercises, use the following figure to find the indicated derivatives, if they exist.

130. Let $h(x)=f(x)+g(x)$. Find
a. $h^{\prime}(1)$,
b. $h^{\prime}(3)$, and
c. $h^{\prime}(4)$.

Answers: a. 0 , b. does not exist, c. 1
131. Let $h(x)=f(x) g(x)$. Find
a. $h^{\prime}(1)$,
b. $h^{\prime}(3)$, and
c. $h^{\prime}(4)$.

Answers: a. 2, b. does not exist, c. 2.5
132. Let $h(x)=\frac{f(x)}{g(x)}$. Find
a. $h^{\prime}(1)$,
b. $h^{\prime}(3)$, and
c. $h^{\prime}(4)$.

Answers: a. -4 , b. does not exist, c. $\frac{2}{5}$

For the following exercises,

a. evaluate $f^{\prime}(a)$, and
b. graph the function $f(x)$ and the tangent line at $x=a$.
133. [$\mathbf{T}] f(x)=2 x^{3}+3 x-x^{2}, a=2$

Answer: a. 23, b. $y=23 x-28$

134. [T] $f(x)=\frac{1}{x}-x^{2}, a=1$

Answer: a. -3, b. $y=3-3 x$

135. [$\mathbf{T}] f(x)=x^{2}-x^{12}+3 x+2, a=0$

Answer: a. 3, b. $y=3 x+2$

136. $[\mathbf{T}] f(x)=\frac{1}{x}-x^{2 / 3}, a=-1$

Answer: a. $-\frac{1}{3}$, b. $y=\frac{x}{3}-\frac{7}{3}$

137. Find the equation of the tangent line to the graph of $f(x)=2 x^{3}+4 x^{2}-5 x-3$ at $x=-1$. Answer: $y=-7 x-3$
138. Find the equation of the tangent line to the graph of $f(x)=x^{2}+\frac{4}{x}-10$ at $x=8$.

Answer: $y=\frac{255}{16} x-73$
139. Find the equation of the tangent line to the graph of $f(x)=\left(3 x-x^{2}\right)\left(3-x-x^{2}\right)$ at $x=1$.

Answer: $y=-5 x+7$
140. Find the point on the graph of $f(x)=x^{3}$ such that the tangent line at that point has an x intercept of 6 .
Answer: (9, 729)
141. Find the equation of the line passing through the point $P(3,3)$ and tangent to the graph of $f(x)=\frac{6}{x-1}$.
Answer: $y=-\frac{3}{2} x+\frac{15}{2}$
142. Determine all points on the graph of $f(x)=x^{3}+x^{2}-x-1$ for which the slope of the tangent line is
a. horizontal
b. -1 .

Answer: a. $(-1,0),\left(\frac{1}{3}, \frac{-32}{27}\right)$ b. $(0,-1),\left(\frac{-2}{3}, \frac{-5}{27}\right)$
143. Find a quadratic polynomial such that $f(1)=5, f^{\prime}(1)=3$ and $f^{\prime \prime}(1)=-6$.

Answer: $y=-3 x^{2}+9 x-1$
144. A car driving along a freeway with traffic has traveled $s(t)=t^{3}-6 t^{2}+9 t$ meters in t seconds.
a. Determine the time in seconds when the velocity of the car is 0 .
b. Determine the acceleration of the car when the velocity is 0 .

Answer: a. $t=1 \mathrm{~s}$ and $t=3 \mathrm{~s}$ b. $\pm 6 \mathrm{~m} / \mathrm{s}^{2}$
145. [T]A herring swimming along a straight line has traveled $s(t)=\frac{t^{2}}{t^{2}+2}$ feet in t seconds.

Determine the velocity of the herring when it has traveled 3 seconds.
Answer: $\frac{12}{121}$ or $0.0992 \mathrm{ft} / \mathrm{s}$
146. The population in millions of arctic flounder in the Atlantic Ocean is modeled by the function $P(t)=\frac{8 t+3}{0.2 t^{2}+1}$, where t is measured in years.
a. Determine the initial flounder population.
b. Determine $P^{\prime}(10)$ and briefly interpret the result.

Answer: a. 3 million b. At year 10, the fish population is decreasing at a rate of approximately 0.3719 million per year or 371,900 per year.
147. [T] The concentration of antibiotic in the bloodstream t hours after being injected is given by the function $C(t)=\frac{2 t^{2}+t}{t^{3}+50}$, where C is measured in milligrams per liter of blood.
a. Find the rate of change of $C(t)$.
b. Determine the rate of change for $t=8,12,24$, and 36
c. Briefly describe what seems to be occurring as the number of hours increases.

Answer: a. $\frac{-2 t^{4}-2 t^{3}+200 t+50}{\left(t^{3}+50\right)^{2}}$ b. $-0.02395 \mathrm{mg} / \mathrm{L}-\mathrm{hr},-0.01344 \mathrm{mg} / \mathrm{L}-\mathrm{hr},-0.003566 \mathrm{mg} / \mathrm{L}-\mathrm{hr}$,
$-0.001579 \mathrm{mg} / \mathrm{L}-\mathrm{hr} \mathrm{c}$. The rate at which the concentration of drug in the bloodstream decreases is slowing to 0 as time increases.
148. A book publisher has a cost function given by $C(x)=\frac{x^{3}+2 x+3}{x^{2}}$, where x is the number of copies of a book in thousands and C is the cost, per book, measured in dollars. Evaluate $C^{\prime}(2)$ and explain its meaning.
Answer: If the publisher publishes more than 2000 books, the rate at which the cost of publication decreases is $\$ 0.25$
149. [T] According to Newton's law of universal gravitation, the force F between two bodies of constant mass m_{1} and m_{2} is given by the formula $F=\frac{G m_{1} m_{2}}{d^{2}}$, where G is the gravitational constant and d is the distance between the bodies.
a. Suppose that G, m_{1}, and m_{2} are constants. Find the rate of change of force F with respect to distance d.
b. Find the rate of change of force F with gravitational constant $G=6.67 \times 10^{-11}$ $\mathrm{Nm}^{2} / \mathrm{kg}^{2}$, on two bodies 10 meters apart, each with a mass of 1000 kilograms.
Answer: a. $F^{\prime}(d)=\frac{-2 G m_{1} m_{2}}{d^{3}}$ b. $-1.33 \times 10^{-7} \mathrm{~N} / \mathrm{m}$

Student Project Formula One Grandstands

1. Physicists have determined that drivers are most likely to lose control of their cars as they are coming into a turn, at the point where the slope of the tangent line is 1 . Find the (x, y) coordinates of this point near the turn.
Answer: Set $f^{\prime}(x)=1$ and solve. $(x, y)=(-2,2)$
2. Find the equation of the tangent line to the curve at this point.

Answer: $y=x+4$
3. To determine whether the spectators are in danger in this scenario, find the x-coordinate of the point where the tangent line crosses the line $y=2.8$. Is this point safely to the right of the grandstand? Or are the spectators in danger?
Answer: $x=-1.2$ This is safely to the right of the grandstand.
4. What if a driver loses control earlier than the physicists project? Suppose a driver loses control at the point $(-2.5,0.625)$. What is the slope of the tangent line at this point?
Answer: $f^{\prime}\left(-2 \frac{1}{2}\right)=4 \frac{3}{4}$
5. If a driver loses control as described in part 4, are the spectators safe?

Answer: Under this scenario, the spectators are not safe. When $y=2.8$, the x-coordinate of the tangent line is approximately -2.04. A car traveling on that path would hit the grandstand.
6. Should you proceed with the current design for the grandstand, or should the grandstands be moved?
Answer: Move the grandstands.

This file is copyright 2016, Rice University. All Rights Reserved.

