Chapter 3 Derivatives 3.6 The Chain Rule

Section Exercises

For the following exercises, given y = f(u) and u = g(x), find $\frac{dy}{dx}$ by using Leibniz's notation for the chain rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$.

214. $y = 3u - 6, u = 2x^2$ Answer: $3 \cdot 4x = 12x$

215. $y = 6u^3, u = 7x - 4$ Answer: $18u^2 \cdot 7 = 18(7x - 4)^2 \cdot 7$

216.
$$y = \sin u, u = 5x - 1$$

Answer: $\cos u \cdot 5 = \cos (5x - 1) \cdot 5$

217.
$$y = \cos u, u = \frac{-x}{8}$$

Answer: $-\sin u \cdot \frac{-1}{8} = -\sin\left(\frac{-x}{8}\right) \cdot \frac{-1}{8}$

218.
$$y = \tan u, u = 9x + 2$$

Answer: $sec^{2}u \cdot 9 = sec^{2}(9x + 2) \cdot 9$

219.
$$y = \sqrt{4u+3}, u = x^2 - 6x$$

Answer: $\frac{8x-24}{2\sqrt{4u+3}} = \frac{4x-12}{\sqrt{4x^2-24x+3}}$

For each of the following exercises,

- a. decompose each function in the form y = f(u) and u = g(x), and
- **b.** find $\frac{dy}{dx}$ as a function of *x*.

220.
$$y = (3x-2)^6$$

Answer: a. $f(u) = u^6, u = 3x-2$; b. $18 \cdot (3x-2)^5$

221. $y = (3x^{2} + 1)^{3}$ Answer: a. $u = 3x^{2} + 1$; b. $18x(3x^{2} + 1)^{2}$ 222. $y = \sin^{5}(x)$ Answer: a. $u = \sin x$; b. $5\sin^{4}(x)\cos(x)$ 223. $y = \left(\frac{x}{7} + \frac{7}{x}\right)^{7}$ Answer: a. $f(u) = u^{7}, u = \frac{x}{7} + \frac{7}{x}$; b. $7\left(\frac{x}{7} + \frac{7}{x}\right)^{6} \cdot \left(\frac{1}{7} - \frac{7}{x^{2}}\right)$ 224. $y = \tan(\sec x)$ Answer: a. $f(u) = \tan u, \ u = \sec x$; b. $\sec^{2}(\sec x) \cdot \sec x \tan x$

225. $y = \csc(\pi x + 1)$ Answer: a. $f(u) = \csc u$, $u = \pi x + 1$; b. $-\pi \csc(\pi x + 1) \cdot \cot(\pi x + 1)$

226.
$$y = \cot^2 x$$

Answer: a. $f(u) = u^2$, $u = \cot x$; a. $-2 \cot x \cdot \csc^2 x$

227.
$$y = -6(\sin x)^{-3}$$

Answer: a. $f(u) = -6u^{-3}, u = \sin x$, b. $18(\sin x)^{-4} \cdot \cos x$

For the following exercises, find $\frac{dy}{dx}$ for each function.

228.
$$y = (3x^{2} + 3x - 1)^{4}$$

Answer: $4(3x^{2} + 3x - 1)^{3} \cdot (6x + 3)$
229. $y = (5 - 2x)^{-2}$
Answer: $\frac{4}{(5 - 2x)^{3}}$
230. $y = \cos^{3}(\pi x)$
Answer: $-3\pi \cos^{2}(\pi x)\sin(\pi x)$

Answer: $\sqrt{\frac{5}{6}}$

Answer: $10\frac{3}{4}$

f'(-1)

231.
$$y = (2x^3 - x^2 + 6x + 1)^3$$

Answer: $6(2x^3 - x^2 + 6x + 1)^2 (3x^2 - x + 3)$
232. $y = \frac{1}{\sin^2(x)}$
Answer: $-2 \cot(x) \csc^2(x)$
233. $y = (\tan x + \sin x)^{-3}$
Answer: $-3(\tan x + \sin x)^{-4} \cdot (\sec^2 x + \cos x)$
234. $y = x^2 \cos^4 x$
Answer: $2x \cdot \cos^4 x - 4x^2 \cos^3 x \sin x$
235. $y = \sin(\cos 7x)$
Answer: $-7 \cos(\cos 7x) \cdot \sin 7x$
236. $y = \sqrt{6 + \sec \pi x^2}$
Answer: $\pi x \cdot (6 + \sec \pi x^2)^{-1/2} \cdot \sec \pi x^2 \tan \pi x^2$
237. $y = \cot^3(4x + 1)$
Answer: $-12\cot^2(4x + 1) \cdot \csc^2(4x + 1)$
238. Let $y = [f(x)]^3$ and suppose that $f'(1) = 4$ and $\frac{dy}{dx} = 10$ for $x = 1$. Find $f(1)$.

239. Let $y = (f(x) + 5x^2)^4$ and suppose that f(-1) = -4 and $\frac{dy}{dx} = 3$ when x = -1. Find

240. Let
$$y = (f(u) + 3x)^2$$
 and $u = x^3 - 2x$. If $f(4) = 6$ and $\frac{dy}{dx} = 18$ when $x = 2$, find $f'(4)$.
Answer: $\frac{-9}{40}$

241. **[T]** Find the equation of the tangent line to $y = -\sin\left(\frac{x}{2}\right)$ at the origin. Use a calculator to graph the function and the tangent line together. Answer: $y = \frac{-1}{2}x$]

242. **[T]** Find the equation of the tangent line to $y = \left(3x + \frac{1}{x}\right)^2$ at the point (1,16). Use a calculator to graph the function and the tangent line together. Answer: y = 16x

243. Find the *x*-coordinates at which the tangent line to $y = \left(x - \frac{6}{x}\right)^8$ is horizontal. Answer: $x = \pm \sqrt{6}$

244. **[T]** Find an equation of the line that is normal to $g(\theta) = \sin^2(\pi\theta)$ at the point $\left(\frac{1}{4}, \frac{1}{2}\right)$. Use a calculator to graph the function and the normal line together. Answer: $y = -\frac{1}{\pi}\theta + \frac{1}{2} + \frac{1}{4\pi}$

For the following exercises, use the information in the following table to find h'(a) at the given value for a.

x	f(x)	f'(x)	g(x)	<i>g</i> '(<i>x</i>)
0	2	5	0	2
1	1	-2	3	0
2	4	4	1	-1
3	3	-3	2	3

245. h(x) = f(g(x)); a = 0

Answer: 10

246. h(x) = g(f(x)); a = 0Answer: -5 247. $h(x) = (x^4 + g(x))^{-2}; a = 1$ Answer: $-\frac{1}{8}$ 248. $h(x) = \left(\frac{f(x)}{g(x)}\right)^2; a = 3$ Answer: $-\frac{45}{4}$ 249. h(x) = f(x+f(x)); a=1Answer: -4 $h(x) = (1 + g(x))^3; a = 2$ 250. Answer: -12 251. $h(x) = g(2 + f(x^2)); a = 1$ Answer: -12 $h(x) = f(g(\sin x)); a = 0$ 252. Answer: 10

253. **[T]** The position function of a freight train is given by $s(t) = 100(t+1)^{-2}$, with s in meters and t in seconds. At time t = 6 s, find the train's

a. velocity and

- b. acceleration.
- c. Using a. and b. is the train speeding up or slowing down?

Answer: a. $-\frac{200}{343}$ m/s, b. $\frac{600}{2401}$ m/s², c. The train is slowing down since velocity and acceleration have opposite signs.

[T] A mass hanging from a vertical spring is in simple harmonic motion as given by the 254. following position function, where t is measured in seconds and s is in inches:

$$s(t) = -3\cos\left(\pi t + \frac{\pi}{4}\right).$$

- a. Determine the position of the spring at t = 1.5 s.
- b. Find the velocity of the spring at t = 1.5 s.

Answer: a. -2.12 in. b. -6.664 in./s²

- 255. **[T]** The total cost to produce x boxes of Thin Mint Girl Scout cookies is C dollars, where $C = 0.0001x^3 - 0.02x^2 + 3x + 300$. In t weeks production is estimated to be x = 1600 + 100t boxes.
 - a. Find the marginal cost C'(x).
 - b. Use Leibniz's notation for the chain rule, $\frac{dC}{dt} = \frac{dC}{dx} \cdot \frac{dx}{dt}$, to find the rate with respect to time t that the cost is changing.
 - c. Use b. to determine how fast costs are increasing when t = 2 weeks. Include units with the answer.

Answer: a. $C'(x) = 0.0003x^2 - 0.04x + 3b$. $\frac{dC}{dt} = 100 \cdot (0.0003x^2 - 0.04x + 3)$ c. Approximately

\$90,300 per week

- **[T]** The formula for the area of a circle is $A = \pi r^2$, where r is the radius of the circle. 256. Suppose a circle is expanding, meaning that both the area A and the radius r (in inches) are expanding.
 - a. Suppose $r = 2 \frac{100}{(t+7)^2}$ where t is time in seconds. Use the chain rule $\frac{dA}{dt} = \frac{dA}{dr} \cdot \frac{dr}{dt}$ to

find the rate at which the area is expanding.

- b. Use a. to find the rate at which the area is expanding at t = 4 s.
- Answer: a. $\frac{dA}{dt} = \frac{400\pi r}{(t+7)^3}$ b. 1.1080 in.²/s
- **[T]** The formula for the volume of a sphere is $S = \frac{4}{3}\pi r^3$, where r (in feet) is the radius 257. of the sphere. Suppose a spherical snowball is melting in the sun.
 - a. Suppose $r = \frac{1}{(t+1)^2} \frac{1}{12}$ where t is time in minutes. Use the chain rule $\frac{dS}{dt} = \frac{dS}{dr} \cdot \frac{dr}{dt}$ to

find the rate at which the snowball is melting.

b. Use a. to find the rate at which the volume is changing at t = 1 min.

Answer: a.
$$\frac{dS}{dt} = -\frac{8\pi r^2}{(t+1)^3}$$
 b. The volume is decreasing at a rate of $-\frac{\pi}{36}$ ft³/min.

- 258. **[T]** The daily temperature in degrees Fahrenheit of Phoenix in the summer can be modeled by the function $T(x) = 94 10 \cos\left[\frac{\pi}{12}(x-2)\right]$, where x is hours after midnight. Find the rate at which the temperature is changing at 4 p.m. Answer: ~ -1.309° F/hr
- 259. **[T]** The depth (in feet) of water at a dock changes with the rise and fall of tides. The depth is modeled by the function $D(t) = 5\sin\left(\frac{\pi}{6}t \frac{7\pi}{6}\right) + 8$, where t is the number of

hours after midnight. Find the rate at which the depth is changing at 6 a.m. Answer: ~ 2.3 ft/hr

This file is copyright 2016, Rice University. All Rights Reserved.