Chapter 2

Limits

2.1 A Preview of Calculus

Section Exercises

For the following exercises, points $P(1,2)$ and $Q(x, y)$ are on the graph of the function $f(x)=x^{2}+1$.

1. [T] Complete the following table with the appropriate values: y-coordinate of Q, the point $Q(x, y)$, and the slope of the secant line passing through points P and Q. Round your answer to eight significant digits.

\boldsymbol{x}	\boldsymbol{y}	$\boldsymbol{Q}(\boldsymbol{x}, \boldsymbol{y})$	$\boldsymbol{m}_{\text {sec }}$
1.1	a.	e.	i.
1.01	b.	f.	j.
1.001	c.	g.	k.
1.0001	d.	h.	l.

Answer: a. 2.2100000; b. 2.0201000; c. 2.0020010; d. 2.0002000; e. (1.1000000, 2.2100000);
f. (1.0100000, 2.0201000); g. (1.0010000, 2.0020010); h. (1.0001000, 2.0002000); i.
2.1000000; j. 2.0100000; k. 2.0010000; 1. 2.0001000
2. Use the values in the right column of the table in the preceding exercise to guess the value of the slope of the line tangent to f at $x=1$.
Answer: 2
3. Use the value in the preceding exercise to find the equation of the tangent line at point P. Graph $f(x)$ and the tangent line.
Answer: $y=2 x$
For the following exercises, points $P(1,1)$ and $Q(x, y)$ are on the graph of the function $f(x)=x^{3}$.
4. $\quad \mathbf{T}]$ Complete the following table with the appropriate values: y-coordinate of Q, the point $Q(x, y)$, and the slope of the secant line passing through points P and Q. Round your answer to eight significant digits.

\boldsymbol{x}	\boldsymbol{y}	$\boldsymbol{Q}(\boldsymbol{x}, \boldsymbol{y})$	$\boldsymbol{m}_{\text {sec }}$
1.1	a.	e.	i.
1.01	b.	f.	j.
1.001	c.	g.	k.
1.0001	d.	h.	l.

Answer: a. 1.3310000; b. 1.0303010; c. 1.0030030; d. 1.0003000; e. (1.1000000, 1.331000); f. (1.0100000, 1.0303010); g. (1.0010000, 1.003030); h. (1.0001000, 1.0003000); i.
3.3100000; j. 3.0301000; k. 3.0030010; 1. 3.0003000
5. Use the values in the right column of the table in the preceding exercise to guess the value of the slope of the tangent line to f at $x=1$.
Answer: 3
6. Use the value in the preceding exercise to find the equation of the tangent line at point P. Graph $f(x)$ and the tangent line.
Answer: $y=3 x-2$
For the following exercises, points $P(4,2)$ and $Q(x, y)$ are on the graph of the function $f(x)=\sqrt{x}$.
7. $[\mathbf{T}]$ Complete the following table with the appropriate values: y-coordinate of Q, the point $Q(x, y)$, and the slope of the secant line passing through points P and Q. Round your answer to eight significant digits.

\boldsymbol{x}	\boldsymbol{y}	$\boldsymbol{Q}(\boldsymbol{x}, \boldsymbol{y})$	$\boldsymbol{m}_{\text {sec }}$
4.1	a.	e.	i.
4.01	b.	f.	j.
4.001	c.	g.	k.
4.0001	d.	h.	l.

Answer: a. 2.0248457; b. 2.0024984; c. 2.0002500; d. 2.0000250; e. (4.1000000,2.0248457); f. (4.0100000,2.0024984); g. (4.0010000,2.0002500); h. (4.00010000,2.0000250); i.
0.24845673 ; j. 0.24984395 ; k. 0.24998438 ; 1. 0.24999844
8. Use the values in the right column of the table in the preceding exercise to guess the value of the slope of the tangent line to f at $x=4$.
Answer: 0.25
9. Use the value in the preceding exercise to find the equation of the tangent line at point P.
Answer: $y=\frac{x}{4}+1$

For the following exercises, points $P(1.5,0)$ and $Q(\phi, y)$ are on the graph of the function $f(\phi)=\cos (\pi \phi)$.
10. [$\mathbf{T}]$ Complete the following table with the appropriate values: y-coordinate of Q, the point $Q(\phi, y)$, and the slope of the secant line passing through points P and Q.
Round your answer to eight significant digits.

\boldsymbol{X}	\boldsymbol{y}	$\boldsymbol{Q}(\phi, \boldsymbol{y})$	$\boldsymbol{m}_{\text {sec }}$
1.4	a.	e.	i.
1.49	b.	f.	j.
1.499	c.	g.	k.
1.4999	d.	h.	l.

Answer: a. -0.30901699 ; b. -0.031410759 ; c. -0.0031415875 ; d. -0.00031415926 ; e.
(1.4000000,-0.30901700); f. (1.4900000,-0.031410759); g. (1.4990000,-0.0031415875); h.
(1.4999000,-0.00031415926); i. 3.0901699; j. 3.1410759; k. 3.1415875; 1. 3.1415926
11. Use the values in the right column of the table in the preceding exercise to guess the value of the slope of the tangent line to f at $\phi=1.5$.
Answer: π
12. Use the value in the preceding exercise to find the equation of the tangent line at point P.
Answer: $y=\pi x-1.5 \pi$
For the following exercises, points $P(-1,-1)$ and $Q(x, y)$ are on the graph of the function $f(x)=\frac{1}{x}$.
13. [$\mathbf{T}]$ Complete the following table with the appropriate values: y-coordinate of Q, the point $Q(x, y)$, and the slope of the secant line passing through points P and Q. Round your answer to eight significant digits.

\boldsymbol{x}	\boldsymbol{y}	$\boldsymbol{Q}(\boldsymbol{x}, \boldsymbol{y})$	$\boldsymbol{m}_{\text {sec }}$
-1.05	a.	e.	i.
-1.01	b.	f.	j.
-1.005	c.	g.	k.
-1.001	d.	h.	l.

Answer: a. -0.95238095 ; b. -0.99009901 ; c. -0.99502488 ; d. -0.99900100 ; e. (-
$1.0500000,-0.95238095)$; f. ($-1.0100000,-0.9909901$); g. ($-1.0050000,-0.99502488$); h.
(1.0010000,-0.99900100); i. -0.95238095 ; j. -0.99009901 ; k. -0.99502488 ; 1. -0.99900100
14. Use the values in the right column of the table in the preceding exercise to guess the value of the slope of the line tangent to f at $x=-1$.
Answer: -1
15. Use the value in the preceding exercise to find the equation of the tangent line at point P.
Answer: $y=-x-2$
For the following exercises, the position function of a ball dropped from the top of a 200-meter tall building is given by $s(t)=200-4.9 t^{2}$, where position s is measured in meters and time \boldsymbol{t} is measured in seconds. Round your answer to eight significant digits.
16. [T] Compute the average velocity of the ball over the given time intervals.
a. $[4.99,5]$
b. $[5,5.01]$
c. $[4.999,5]$
d. $[5,5.001]$

Answer: a. $-48.951000 \mathrm{~m} / \mathrm{sec} ;$ b. $-49.049000 \mathrm{~m} / \mathrm{sec} ; \mathrm{c} .-48.995100 \mathrm{~m} / \mathrm{sec} ;$ d. -49.000490 m / sc
17. Use the preceding exercise to guess the instantaneous velocity of the ball at $t=5 \mathrm{sec}$.

Answer: $-49 \mathrm{~m} / \mathrm{sec}$ (velocity of the ball is $49 \mathrm{~m} / \mathrm{sec}$ downward)
For the following exercises, consider a stone tossed into the air from ground level with an initial velocity of $\mathbf{1 5} \mathbf{~ m} / \mathbf{s e c}$. Its height in meters at time \boldsymbol{t} seconds is $h(t)=15 t-4.9 t^{2}$.
18. [T] Compute the average velocity of the stone over the given time intervals.
a. $[1,1.05]$
b. $[1,1.01]$
c. $[1,1.005]$
d. $[1,1.001]$

Answer: a. $4.9950000 \mathrm{~m} / \mathrm{sec}$; b. $5.1510000 \mathrm{~m} / \mathrm{sec}$; c. $5.1755000 \mathrm{~m} / \mathrm{sec}$; d. $5.1951000 \mathrm{~m} / \mathrm{sec}$
19. Use the preceding exercise to guess the instantaneous velocity of the stone at $t=1$ sec.
Answer: $5.2 \mathrm{~m} / \mathrm{sec}$
For the following exercises, consider a rocket shot into the air that then returns to Earth. The height of the rocket in meters is given by $h(t)=600+78.4 t-4.9 t^{2}$, where \boldsymbol{t} is measured in seconds.
20. [T] Compute the average velocity of the rocket over the given time intervals.
a. $[9,9.01]$
b. $[8.99,9]$
c. $[9,9.001]$
d. $[8.999,9]$

Answer: a. $-9.8490000 \mathrm{~m} / \mathrm{sec} ;$ b. $-9.7510000 \mathrm{~m} / \mathrm{sec} ;$ c. $-9.8049000 \mathrm{~m} / \mathrm{sec} ;$ d. -9.7951000 $\mathrm{m} / \mathrm{sec}$
21. Use the preceding exercise to guess the instantaneous velocity of the rocket at $t=9$ sec.
Answer: $-9.8 \mathrm{~m} / \mathrm{sec}$
For the following exercises, consider an athlete running a $40-\mathrm{m}$ dash. The position of the athlete is given by $d(t)=\frac{t^{3}}{6}+4 t$, where \boldsymbol{d} is the position in meters and t is the time elapsed, measured in seconds.
22. [T] Compute the average velocity of the runner over the given time intervals.
a. $[1.95,2.05]$
b. $[1.995,2.005]$
c. $[1.9995,2.0005]$
d. $[2,2.00001]$

Answer: a. $6.0004167 \mathrm{~m} / \mathrm{sec}$; b) $6.0000042 \mathrm{~m} / \mathrm{sec}$; c. $6.0000000 \mathrm{~m} / \mathrm{sec}$; d. $6.0000000 \mathrm{~m} / \mathrm{sec}$
23. Use the preceding exercise to guess the instantaneous velocity of the runner at $t=2$ sec.
Answer: $6 \mathrm{~m} / \mathrm{sec}$

For the following exercises, consider the function $f(x)=|x|$.
24. Sketch the graph of f over the interval $[-1,2]$ and shade the region above the x-axis. Answer:

25. Use the preceding exercise to find the approximate value of the area between the x axis and the graph of f over the interval $[-1,2]$ using rectangles. For the rectangles, use the square units, and approximate both above and below the lines. Use geometry to find the exact answer.
Answer: Under, 1 unit ${ }^{2}$; over: 4 unit 2. The exact area of the two triangles is
$\frac{1}{2}(1)(1)+\frac{1}{2}(2)(2)=2.5$ units 2.
For the following exercises, consider the function $f(x)=\sqrt{1-x^{2}}$. (Hint: This is the upper half of a circle of radius 1 positioned at $(0,0)$.)
26. Sketch the graph of f over the interval $[-1,1]$.

Answer:

27. Use the preceding exercise to find the approximate area between the x-axis and the graph of f over the interval $[-1,1]$ using rectangles. For the rectangles, use squares 0.4 by 0.4 units, and approximate both above and below the lines. Use geometry to find the exact answer.
Answer: Under, 0.96 unit 2; over, 1.92 unit 2. The exact area of the semicircle with radius 1 is $\frac{\pi(1)^{2}}{2}=\frac{\pi}{2}$ unit 2.

For the following exercises, consider the function $f(x)=-x^{2}+1$.

28. Sketch the graph of f over the interval $[-1,1]$.

Answer:

29. Approximate the area of the region between the x-axis and the graph of f over the interval $[-1,1]$.
Answer: Approximately 1.3333333 unit 2

This file is copyright 2016, Rice University. All Rights Reserved.

