Chapter 2 Limits 2.4 Continuity

Section Exercises

For the following exercises, determine the point(s), if any, at which each function is discontinuous. Classify any discontinuity as jump, removable, infinite, or other.

$$131. \quad f(x) = \frac{1}{\sqrt{x}}$$

Answer: The function is defined for all x in the interval $(0, \infty)$.

132.
$$f(x) = \frac{2}{x^2 + 1}$$

Answer: The function is continuous for all real values *x*.

$$133. \qquad f(x) = \frac{x}{x^2 - x}$$

Answer: Removable discontinuity at x = 0; infinite discontinuity at x = 1

134.
$$g(t) = t^{-1} + 1$$

Answer: Infinite discontinuity at t = 0

$$135. \quad f(x) = \frac{5}{e^x - 2}$$

Answer: Infinite discontinuity at $x = \ln 2$

136.
$$f(x) = \frac{|x-2|}{x-2}$$

Answer: Jump discontinuity at x = 2

137.
$$H(x) = \tan 2x$$

Answer: Infinite discontinuities at $x = \frac{(2k+1)\pi}{4}$, for $k = 0, \pm 1, \pm 2, \pm 3, ...$

138.
$$f(t) = \frac{t+3}{t^2+5t+6}$$

Answer: Removable discontinuity at t = -3; infinite discontinuity at t = -2]

For the following exercises, decide if the function continuous at the given point. If it is discontinuous, what type of discontinuity is it?

139.
$$f(x) = \frac{2x^2 - 5x + 3}{x - 1}$$
 at $x = 1$

Answer: No. It is a removable discontinuity.

140.
$$h(\theta) = \frac{\sin \theta - \cos \theta}{\tan \theta}$$
 at $\theta = \pi$

Answer: No. It is an infinite discontinuity.

141.
$$g(u) = \begin{cases} \frac{6u^2 + u - 2}{2u - 1} & \text{if } u \neq \frac{1}{2} \\ \frac{7}{2} & \text{if } u = \frac{1}{2} \end{cases}$$
, at $u = \frac{1}{2}$

Answer: Yes. It is continuous.

142.
$$f(y) = \frac{\sin(\pi y)}{\tan(\pi y)}$$
, at $y = 1$

Answer: No. It is a removable discontinuity.

143.
$$f(x) = \begin{cases} x^2 - e^x & \text{if } x < 0 \\ x - 1 & \text{if } x \ge 0 \end{cases}$$
, at $x = 0$

Answer: Yes. It is continuous.

144.
$$f(x) = \begin{cases} x \sin(x) & \text{if } x \le \pi \\ x \tan(x) & \text{if } x > \pi \end{cases}, \text{ at } x = \pi$$

Answer: Yes. It is continuous.

In the following exercises, find the value(s) of k that makes each function continuous over the given interval.

145.
$$f(x) = \begin{cases} 3x+2, & x < k \\ 2x-3, & k \le x \le 8 \end{cases}$$

Answer: k = -5

146.
$$f(\theta) = \begin{cases} \sin \theta, & 0 \le \theta < \frac{\pi}{2} \\ \cos(\theta + k), & \frac{\pi}{2} \le \theta \le \pi \end{cases}$$

Answer: $k = -\frac{\pi}{2}$ 147. $f(x) = \begin{cases} \frac{x^2 + 3x + 2}{x + 2}, & x \neq -2 \\ k, & x = -2 \end{cases}$ Answer: k = -1148. $f(x) = \begin{cases} e^{kx}, & 0 \le x < 4 \\ x + 3, & 4 \le x \le 8 \end{cases}$ Answer: $k = \frac{\ln 7}{4}$ 149. $f(x) = \begin{cases} \sqrt{kx}, & 0 \le x \le 3 \\ x + 1, & 3 < x \le 10 \end{cases}$

Answer: $k = \frac{16}{3}$

In the following exercises, use the Intermediate Value Theorem (IVT).

150. Let $h(x) = \begin{cases} 3x^2 - 4, & x \le 2\\ 5 + 4x, & x > 2 \end{cases}$ Over the interval [0, 4], there is no value of x such that h(x) = 10, although h(0) < 10 and h(4) > 10. Explain why this does not contradict the IVT.

Answer: *h* is not continuous at x = 2 since $\lim_{x \to 2^-} h(x) = 8 \neq \lim_{x \to 2^+} h(x) = 13$; the discontinuity is jump thereby "omitting" the values $8 \le y < 13$.

151. A particle moving along a line has at each time *t* a position function s(t), which is continuous. Assume s(2) = 5 and s(5) = 2. Another particle moves such that its position is given by h(t) = s(t) - t. Explain why there must be a value *c* for 2 < c < 5 such that h(c) = 0.

Answer: Since both *s* and y = t are continuous everywhere, then h(t) = s(t) - t is continuous everywhere and, in particular, it is continuous over the closed interval [2,5]. Also, h(2) = 3 > 0 and h(5) = -3 < 0. Therefore, by the IVT, there is a value x = c such that h(c) = 0.

- 152. **[T]** Use the statement "The cosine of *t* is equal to *t* cubed."
 - a. Write a mathematical equation of the statement.
 - b. Prove that the equation in part a. has at least one real solution.
 - c. Use a calculator to find an interval of length 0.01 that contains a solution.

Answer: a. $\cos t = t^3$; b. Let $f(t) = \cos t - t^3$ and $I = \left[0, \frac{\pi}{2}\right]$. Then, *f* is continuous on *I* and

f(0) = 1 > 0 and $f\left(\frac{\pi}{2}\right) = -\frac{\pi}{2} < 0$, so the IVT applies. That is, there is a value $x = c \in I$ such

that f(c) = 0. In other words, $\cos c - c^3 = 0 \rightarrow \cos c = c^3$. c. [0.86, 0.87]

153. Apply the IVT to determine whether $2^x = x^3$ has a solution in one of the intervals [1.25,1.375] or [1.375,1.5]. Briefly explain your response for each interval.

Answer: The function $f(x) = 2^x - x^3$ is continuous over the interval [1.25,1.375] and has opposite signs at the endpoints.

154. Consider the graph of the function y = f(x) shown in the following graph.

- a. Find all values for which the function is discontinuous.
- b. For each value in part a., state why the formal definition of continuity does not apply.
- c. Classify each discontinuity as either jump, removable, or infinite.

Answer: a. x = -1, 0, 1. b. For x = -1, $\lim_{x \to -1} f(x)$ does not exist; for x = 0, $\lim_{x \to 0} f(x)$ does not exist and f(0) is undefined; for x = 1, $\lim_{x \to 1} f(x) \neq f(1)$. c. x = -1, jump; x = 0, infinite; x = 1, removable.

155. Let
$$f(x) = \begin{cases} 3x, x > 1 \\ x^3, x < 1 \end{cases}$$
.

- a. Sketch the graph of f.
- b. Is it possible to find a value k such that f(1) = k, which makes f(x) continuous for all real numbers? Briefly explain.

b. It is not possible to redefine f(1) since the discontinuity is a jump discontinuity.

156. Let
$$f(x) = \frac{x^4 - 1}{x^2 - 1}$$
 for $x \neq -1, 1$.

a. Sketch the graph of *f*.

b. Is it possible to find values k_1 and k_2 such that f(-1) = k and $f(1) = k_2$, and that makes f(x) continuous for all real numbers? Briefly explain.

b. It is possible to redefine both as f(-1) = f(1) = 2 since both discontinuities are removable.

157. Sketch the graph of the function y = f(x) with properties i. through vii.

- i. The domain of f is $(-\infty, +\infty)$.
- ii. *f* has an infinite discontinuity at x = -6.
- iii. f(-6) = 3
- iv. $\lim_{x \to -3^{-}} f(x) = \lim_{x \to -3^{+}} f(x) = 2$
- v. f(-3) = 3
- vi. *f* is left continuous but not right continuous at x = 3.

vii. $\lim_{x \to \infty} f(x) = -\infty$ and $\lim_{x \to \infty} f(x) = +\infty$

Answer: Answers may vary; see the following example:

- 158. Sketch the graph of the function y = f(x) with properties i. through iv.
 - i. The domain of f is [0,5].
 - ii. $\lim_{x \to 1^+} f(x)$ and $\lim_{x \to 1^-} f(x)$ exist and are equal.
- iii. f(x) is left continuous but not continuous at x = 2, and right continuous but not continuous at x = 3.
- iv. f(x) has a removable discontinuity at x = 1, a jump discontinuity at x = 2, and the following limits hold: $\lim_{x \to 3^-} f(x) = -\infty$ and $\lim_{x \to 3^+} f(x) = 2$.

Answer: Answers may vary; see the following example:

In the following exercises, suppose y = f(x) is defined for all x. For each description, sketch a graph with the indicated property.

159. Discontinuous at x = 1 with $\lim_{x \to -1} f(x) = -1$ and $\lim_{x \to 2} f(x) = 4$ Answer: Answers may vary; see the following example:

160. Discontinuous at x = 2 but continuous elsewhere with $\lim_{x \to 0} f(x) = \frac{1}{2}$ Answer: Answers may vary; see the following example:

Determine whether each of the given statements is true. Justify your response with an explanation or counterexample.

161. $f(t) = \frac{2}{e^t - e^{-t}}$ is continuous everywhere. Answer: False. It is continuous over $(-\infty, 0) \cup (0, \infty)$.

162. If the left- and right-hand limits of f(x) as $x \to a$ exist and are equal, then f cannot be discontinuous at x = a.

Answer: False. Consider $f(x) = \begin{cases} x \text{ if } x \neq 0 \\ 4 \text{ if } x = 0 \end{cases}$.

163. If a function is not continuous at a point, then it is not defined at that point. Answer: False. Consider $f(x) = \begin{cases} x \text{ if } x \neq 0 \\ 4 \text{ if } x = 0 \end{cases}$.

164. According to the IVT, $\cos x - \sin x - x = 2$ has a solution over the interval [-1,1]. Answer: True. The function $f(x) = \cos x - \sin x - x - 2$ is continuous, and f(-1) > 0 and f(1) < 0.

165. If f(x) is continuous such that f(a) and f(b) have opposite signs, then f(x) = 0 has exactly one solution in [a,b].

Answer: False. IVT only says that there is *at least* one solution; it does not guarantee that there is exactly one. Consider f(x) = cos(x) on $[-\pi, 2\pi]$.

166. The function $f(x) = \frac{x^2 - 4x + 3}{x^2 - 1}$ is continuous over the interval [0,3]. Answer: False. It has a removable discontinuity at x = 1.

167. If f(x) is continuous everywhere and f(a), f(b) > 0, then there is no root of f(x) in the interval [a,b].

Answer: False. The IVT does *not* work in reverse! Consider $(x-1)^2$ over the interval [-2, 2].

[T] The following problems consider the scalar form of Coulomb's law, which describes the electrostatic force between two point charges, such as electrons. It is given by the equation $F(r) = k_e \frac{|q_1q_2|}{r^2}$, where k_e is Coulomb's constant, q_i are the magnitudes of the charges of

the two particles, and r is the distance between the two particles.

- 168. To simplify the calculation of a model with many interacting particles, after some threshold value r = R, we approximate *F* as zero.
 - a. Explain the physical reasoning behind this assumption.
 - b. What is the force equation?
 - c. Evaluate the force *F* using both Coulomb's law and our approximation, assuming two protons with a charge magnitude of 1.6022×10^{-19} coulombs (C), and the Coulomb constant $k_e = 8.988 \times 10^9$ Nm²/C² are 1 m apart. Also, assume *R* < 1 m. How much inaccuracy does our approximation generate? Is our approximation reasonable?

d. Is there any finite value of R for which this system remains continuous at R? Answer: a. The force between two charged particles at a large distance apart, such as one in the United States and the other in Australia, have a *very* negligible effect on each other. b.

$$F(r) = \begin{cases} k_e \frac{|q_1q_2|}{r^2} & \text{if } r < R \\ 0 & \text{if } r \ge R \end{cases}$$
. c. $F(1) = 2.307 \times 10^{-28}$ versus 0. They are very close. d. No.

- 169. Instead of making the force 0 at *R*, instead we let the force be 10^{-20} for $r \ge R$. Assume two protons, which have a magnitude of charge 1.6022×10^{-19} C, and the Coulomb constant $k_e = 8.988 \times 10^9$ Nm²/C². Is there a value *R* that can make this system continuous? If so, find it.
- Answer: R = 0.0001519 m

Recall the discussion on spacecraft from the chapter opener. The following problems consider a rocket launch from Earth's surface. The force of gravity on the rocket is given by $F(d) = -mk/d^2$, where *m* is the mass of the rocket, *d* is the distance of the rocket from the center of Earth, and *k* is a constant.

170. **[T]** Determine the value and units of k given that the mass of the rocket is 3 million kg. (*Hint*: The distance from the center of Earth to its surface is 6378 km.)

Answer: $k = 398,653 \text{ km}^2/\text{kg}$

171. **[T]** After a certain distance *D* has passed, the gravitational effect of Earth becomes quite negligible, so we can approximate the force function by $F(d) = \begin{cases} -\frac{mk}{d^2} & \text{if } d < D \\ 10,000 & \text{if } d \ge D \end{cases}$. Using

the value of k found in the previous exercise, find the necessary condition D such that the force function remains continuous.

Answer: D = 345,826 km

172. As the rocket travels away from Earth's surface, there is a distance *D* where the rocket sheds some of its mass, since it no longer needs the excess fuel storage. We can write this

function as
$$F(d) = \begin{cases} -\frac{m_1k}{d^2} & \text{if } d < D\\ -\frac{m_2k}{d^2} & \text{if } d \ge D \end{cases}$$
. Is there a *D* value such that this function is

continuous, assuming $m_1 \neq m_2$? Answer: No. It is a jump discontinuity.

Prove the following functions are continuous everywhere

173. $f(\theta) = \sin \theta$

Answer: For all values of a, f(a) is defined, $\lim_{\theta \to a} f(\theta)$ exists, and $\lim_{\theta \to a} f(\theta) = f(a)$. Therefore, $f(\theta)$ is continuous everywhere.

174.
$$g(x) = |x|$$

Answer: g(x) can be rewritten as $g(x) = \begin{cases} -x, x < 0 \\ x, x \ge 0 \end{cases}$. Since g(x) is continuous at x = 0, and the functions -x and x are continuous for all values of x, g(x) is continuous everywhere.

175. Where is $f(x) = \begin{cases} 0 \text{ if } x \text{ is irrational} \\ 1 \text{ if } x \text{ is rational} \end{cases}$ continuous?

Answer: Nowhere

This file is copyright 2016, Rice University. All Rights Reserved.