Chapter 2 Limits 2.5 The Precise Definition of a Limit

Section Exercises

In the following exercises, write the appropriate $\varepsilon - \delta$ definition for each of the given statements.

 $176. \quad \lim_{x \to a} f(x) = N$

Answer: For every $\varepsilon > 0$, there exists a $\delta > 0$, so that if $0 < |x-a| < \delta$, then $|f(x) - N| < \varepsilon$]

177. $\lim_{t \to b} g(t) = M$

Answer: For every $\varepsilon > 0$, there exists a $\delta > 0$, so that if $0 < |t-b| < \delta$, then $|g(t)-M| < \varepsilon$]

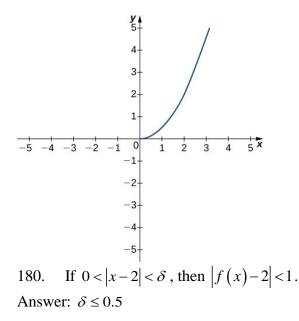
 $178. \quad \lim_{x \to c} h(x) = L$

Answer: For every $\varepsilon > 0$, there exists a $\delta > 0$, so that if $0 < |x - c| < \delta$, then $|h(x) - L| < \varepsilon$]

 $179. \quad \lim_{x \to a} \varphi(x) = A$

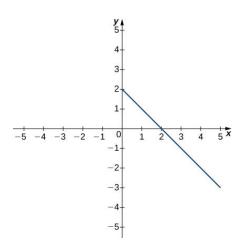
Answer: For every $\varepsilon > 0$, there exists a $\delta > 0$, so that if $0 < |x - a| < \delta$, then $|\varphi(x) - A| < \varepsilon$]

The following graph of the function f satisfies $\lim_{x\to 2} f(x) = 2$. In the following exercises, determine a value of $\delta > 0$ that satisfies each statement.



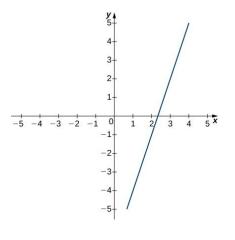
181. If $0 < |x-2| < \delta$, then |f(x)-2| < 0.5. Answer: $\delta \le 0.25$

The following graph of the function f satisfies $\lim_{x\to 3} f(x) = -1$. In the following exercises, determine a value of $\delta > 0$ that satisfies each statement.



- 182. If $0 < |x-3| < \delta$, then |f(x)+1| < 1. Answer: $\delta \le 1$
- 183. If $0 < |x-3| < \delta$, then |f(x)+1| < 2. Answer: $\delta \le 2$

The following graph of the function f satisfies $\lim_{x\to 3} f(x) = 2$. In the following exercises, for each value of ε , find a value of $\delta > 0$ such that the precise definition of limit holds true.



184. $\varepsilon = 1.5$ Answer: $\delta \le 0.5$

185. $\varepsilon = 3$ Answer: $\delta \le 1$

[T] In the following exercises, use a graphing calculator to find a number δ such that the statements hold true.

186. $\left|\sin\left(2x\right) - \frac{1}{2}\right| < 0.1$, whenever $\left|x - \frac{\pi}{12}\right| < \delta$

Answer: $\delta < 0.2019$

187. $\left|\sqrt{x-4}-2\right| < 0.1$, whenever $\left|x-8\right| < \delta$ Answer: $\delta < 0.3900$

In the following exercises, use the precise definition of limit to prove the given limits.

188. $\lim_{x \to 2} (5x+8) = 18$ Answer: Let $\delta = \varepsilon/5$. If $0 < |x-2| < \varepsilon/5$, then $|5x+8-18| = 5|x-2| < \varepsilon$.

189. $\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = 6$ Answer: Let $\delta = \varepsilon$. If $0 < |x - 3| < \varepsilon$, then $|x + 3 - 6| = |x - 3| < \varepsilon$.

190. $\lim_{x \to 2} \frac{2x^2 - 3x - 2}{x - 2} = 5$ Answer: Let $\delta = \varepsilon/2$. If $0 < |x - 2| < \varepsilon/2$, then $|2x + 1 - 5| = 2|x - 2| < \varepsilon$.

191. $\lim_{x \to 0} x^4 = 0$ Answer: Let $\delta = \sqrt[4]{\varepsilon}$. If $0 < |x| < \sqrt[4]{\varepsilon}$, then $|x^4| = x^4 < \varepsilon$.

192. $\lim_{x \to 2} (x^2 + 2x) = 8$ Answer: Let $\delta = \min\{1, \varepsilon/7\}$. If $0 < |x - 2| < \delta$ then $|x^2 + 2x - 8| = |x + 4| |x - 2| < 7\delta < \varepsilon$.

In the following exercises, use the precise definition of limit to prove the given one-sided limits.

193. $\lim_{x \to 5^-} \sqrt{5 - x} = 0$

Answer: Let $\delta = \varepsilon^2$. If $5 - \varepsilon^2 < x < 5$, then $\left| \sqrt{5 - x} \right| = \sqrt{5 - x} < \varepsilon$.

194.
$$\lim_{x \to 0^+} f(x) = -2$$
, where $f(x) = \begin{cases} 8x - 3, & \text{if } x < 0 \\ 4x - 2, & \text{if } x \ge 0 \end{cases}$.

Answer: Let $\delta = \varepsilon/4$. If $0 < x < \varepsilon/4$, then $|f(x)+2| = 4x < \varepsilon$.

195.
$$\lim_{x \to 1^{-}} f(x) = 3$$
, where $f(x) = \begin{cases} 5x - 2, & \text{if } x < 1 \\ 7x - 1, & \text{if } x \ge 1 \end{cases}$.

Answer: Let $\delta = \varepsilon/5$. If $1 - \varepsilon/5 < x < 1$, then $|f(x) - 3| = 5x - 5 < \varepsilon$.

In the following exercises, use the precise definition of limit to prove the given infinite limits.

 $196. \qquad \lim_{x \to 0} \frac{1}{x^2} = \infty$

Answer: Let $\delta = 1/\sqrt{N}$. If $0 < |x| < 1/\sqrt{N}$, then $f(x) = 1/x^2 > N$.

$$197. \qquad \lim_{x \to -1} \frac{3}{\left(x+1\right)^2} = \infty$$

Answer: Let $\delta = \sqrt{\frac{3}{M}}$. If $0 < |x+1| < \sqrt{\frac{3}{M}}$, then $f(x) = \frac{3}{(x+1)^2} > M$.

198.
$$\lim_{x \to 2^{-1}} \frac{1}{(x-2)^2} = -\infty$$

Answer: Let $\delta = 1/\sqrt{N}$. If $0 < |x-2| < 1/\delta = 1/\sqrt{N}$, then $f(x) = -1/(x-2)^2 > N$.

199. An engineer is using a machine to cut a flat square of Aerogel of area 144 cm². If there is a maximum error tolerance in the area of 8 cm², how accurately must the engineer cut on the side, assuming all sides have the same length? How do these numbers relate to δ , ε , a, and L?

Answer: 0.328 cm, $\varepsilon = 8$, $\delta = 0.33$, a = 12, L = 144

200. Use the precise definition of limit to prove that the following limit does not exist: $\lim_{x \to 1} \frac{|x-1|}{x-1}.$

Answer: $\varepsilon = 1/2$, $x = 2 \pm \delta/2$

201. Using precise definitions of limits, prove that $\lim_{x\to 0} f(x)$ does not exist, given that f(x) is the ceiling function. (*Hint*: Try any $\delta < 1$.) Answer: Answers may vary. 202. Using precise definitions of limits, prove that $\lim_{x \to 0} f(x)$ does not exist:

 $f(x) = \begin{cases} 1 \text{ if } x \text{ is rational} \\ 0 \text{ if } x \text{ is irrational} \end{cases}$ (*Hint*: Think about how you can always choose a rational number 0 < r < d, but |f(r) - 0| = 1.)

Answer: Answers may vary.

203. Using precise definitions of limits, determine $\lim_{x \to 0} f(x)$ for $f(x) = \begin{cases} x \text{ if } x \text{ is rational} \\ 0 \text{ if } x \text{ is irrational} \end{cases}$. (*Hint*: Break into two cases, *x* rational and *x* irrational.)

Answer: 0

204. Using the function from the previous exercise, use the precise definition of limits to show that $\lim_{x \to 0} f(x)$ does not exist for $a \neq 0$.

Answer: Answers may vary.

For the following exercises, suppose that $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$ both exist. Use the precise definition of limits to prove the following limit laws:

205. $\lim_{x \to a} (f(x) + g(x)) = L + M$ $\lim_{x \to a} (f(x) + g(x))$ Answer: $= \lim_{x \to a} (f(x)) + \lim_{x \to a} (g(x))$ = L + M

206. $\lim_{x \to a} [cf(x)] = cL$ for any real constant *c* (*Hint*: Consider two cases: c = 0 and $c \neq 0$.) Answer: Answers may vary.

207.
$$\lim_{x \to a} \left[f(x)g(x) \right] = LM . (Hint: |f(x)g(x) - LM| = |f(x)g(x) - f(x)M + f(x)M - LM| \le |f(x)||g(x) - M| + |M||f(x) - L|$$
.)

Answer: Answers may vary.

Chapter Review Exercises

True or False. In the following exercises, justify your answer with a proof or a counterexample.

208. A function has to be continuous at x = a if the $\lim_{x \to a} f(x)$ exists.

Answer: False. We also need $\lim_{x \to a} f(x) = f(a)$.

209. You can use the quotient rule to evaluate $\lim_{x \to 0} \frac{\sin x}{x}$.

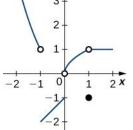
Answer: False

210. If there is a vertical asymptote at x = a for the function f(x), then *f* is undefined at the point x = a.

Answer: False

211. If $\lim_{x\to a} f(x)$ does not exist, then *f* is undefined at the point x = a. Answer: False. A removable discontinuity is possible.

- 212. Using the graph, find each limit or explain why the limit does not exist.
 - a. $\lim_{x \to -1} f(x)$
 - b. $\lim_{x \to 1} f(x)$
 - c. $\lim_{x\to 0^+} f(x)$



Answer: a. DNE; b. 1; c. 0; d. DNE

In the following exercises, evaluate the limit algebraically or explain why the limit does not exist.

213.
$$\lim_{x \to 2} \frac{2x^2 - 3x - 2}{x - 2}$$

Answer: 5

214. $\lim_{x \to 0} 3x^2 - 2x + 4$ Answer: 4 215. $\lim_{x \to 3} \frac{x^3 - 2x^2 - 1}{3x - 2}$ Answer: 8/7 $\lim_{x \to \pi/2} \frac{\cot x}{\cos x}$ 216. Answer: 1 217. $\lim_{x \to -5} \frac{x^2 + 25}{x + 5}$ Answer: DNE 218. $\lim_{x \to 2} \frac{3x^2 - 2x - 8}{x^2 - 4}$ Answer: 5/2219. $\lim_{x \to 1} \frac{x^2 - 1}{x^3 - 1}$ Answer: 2/3 $\lim_{x \to 1} \frac{x^2 - 1}{\sqrt{x} - 1}$ 220. Answer: 4 221. $\lim_{x \to 4} \frac{4-x}{\sqrt{x-2}}$ Answer: -4 222. $\lim_{x \to 4} \frac{1}{\sqrt{x} - 2}$ Answer: DNE

In the following exercises, use the squeeze theorem to prove the limit.

223. $\lim_{x \to 0} x^2 \cos(2\pi x) = 0$ Answer: Since $-1 \le \cos(2\pi x) \le 1$, then $-x^2 \le x^2 \cos(2\pi x) \le x^2$. Since $\lim_{x \to 0} x^2 = 0 = \lim_{x \to 0} -x^2$, it follows that $\lim_{x \to 0} x^2 \cos(2\pi x) = 0$. / \

224.
$$\lim_{x \to 0} x^3 \sin\left(\frac{\pi}{x}\right) = 0$$

Answer: Since $-1 \le \sin\left(\frac{\pi}{x}\right) \le 1$, then $-x^3 \le x^3 \sin\left(\frac{\pi}{x}\right) \le x^3$ for $x \ge 0$ and $x^3 \le x^3 \sin\left(\frac{\pi}{x}\right) \le -x^3$
for $x \le 0$. Since $\lim_{x \to 0} x^3 = 0 = \lim_{x \to 0} -x^3$, it follows that $\lim_{x \to 0} x^3 \sin\left(\frac{\pi}{x}\right) = 0$.

225. Determine the domain such that the function $f(x) = \sqrt{x-2} + xe^x$ is continuous over its domain. Answer: $[2,\infty]$

In the following exercises, determine the value of c such that the function remains continuous. Draw your resulting function to ensure it is continuous.

226.
$$f(x) = \begin{cases} x^2 + 1, & x > c \\ 2x, & x \le c \end{cases}$$

Answer: c = 1

227.
$$f(x) = \begin{cases} \sqrt{x+1}, x > -1 \\ x^2 + c, x \le -1 \end{cases}$$

Answer: c = -1

In the following exercises, use the precise definition of limit to prove the limit.

228. $\lim_{x \to 1} (8x+16) = 24$ Answer: $\delta = \varepsilon/8$

229. $\lim_{x \to 0} x^3 = 0$
Answer: $\delta = \sqrt[3]{\varepsilon}$

230. A ball is thrown into the air and the vertical position is given by $x(t) = -4.9t^2 + 25t + 5$. Use the Intermediate Value Theorem to show that the ball must land on the ground sometime between 5 sec and 6 sec after the throw.

Answer: Since x(5) > 0, x(6) < 0, and x(t) for all values of t, the Intermediate Value Theorem states that there is some value of t in (5,6) where x(t) = 0.

231. A particle moving along a line has a displacement according to the function $x(t) = t^2 - 2t + 4$, where *x* is measured in meters and *t* is measured in seconds. Find the average velocity over the time period t = [0, 2].

Answer: 0 m/sec

232. From the previous exercises, estimate the instantaneous velocity at t = 2 by checking the average velocity within t = 0.01 sec.

Answer: Between 1.99 m/sec and 2.01 m/sec.

This file is copyright 2016, Rice University. All Rights Reserved.