Chapter 2

Limits
2.5 The Precise Definition of a Limit

Section Exercises

In the following exercises, write the appropriate $\varepsilon-\delta$ definition for each of the given statements.
176. $\lim _{x \rightarrow a} f(x)=N$

Answer: For every $\varepsilon>0$, there exists a $\delta>0$, so that if $0<|x-a|<\delta$, then $|f(x)-N|<\varepsilon$]
177. $\lim _{t \rightarrow b} g(t)=M$

Answer: For every $\varepsilon>0$, there exists a $\delta>0$, so that if $0<|t-b|<\delta$, then $|g(t)-M|<\varepsilon$]
178. $\lim _{x \rightarrow c} h(x)=L$

Answer: For every $\varepsilon>0$, there exists a $\delta>0$, so that if $0<|x-c|<\delta$, then $|h(x)-L|<\varepsilon$]
179. $\lim _{x \rightarrow a} \varphi(x)=A$

Answer: For every $\varepsilon>0$, there exists a $\delta>0$, so that if $0<|x-a|<\delta$, then $|\varphi(x)-A|<\varepsilon$]

The following graph of the function \boldsymbol{f} satisfies $\lim _{x \rightarrow 2} f(x)=2$. In the following exercises, determine a value of $\delta>0$ that satisfies each statement.

180. If $0<|x-2|<\delta$, then $|f(x)-2|<1$.

Answer: $\delta \leq 0.5$
181. If $0<|x-2|<\delta$, then $|f(x)-2|<0.5$.

Answer: $\delta \leq 0.25$

The following graph of the function \boldsymbol{f} satisfies $\lim _{x \rightarrow 3} f(x)=-1$. In the following exercises, determine a value of $\delta>0$ that satisfies each statement.

182. If $0<|x-3|<\delta$, then $|f(x)+1|<1$.

Answer: $\delta \leq 1$
183. If $0<|x-3|<\delta$, then $|f(x)+1|<2$.

Answer: $\delta \leq 2$
The following graph of the function \boldsymbol{f} satisfies $\lim _{x \rightarrow 3} f(x)=2$. In the following exercises, for each value of ε, find a value of $\delta>0$ such that the precise definition of limit holds true.

184. $\varepsilon=1.5$

Answer: $\delta \leq 0.5$
185. $\varepsilon=3$

Answer: $\delta \leq 1$
[T] In the following exercises, use a graphing calculator to find a number δ such that the statements hold true.
186. $\left|\sin (2 x)-\frac{1}{2}\right|<0.1$, whenever $\left|x-\frac{\pi}{12}\right|<\delta$

Answer: $\delta<0.2019$
187. $|\sqrt{x-4}-2|<0.1$, whenever $|x-8|<\delta$

Answer: $\delta<0.3900$
In the following exercises, use the precise definition of limit to prove the given limits.
188. $\lim _{x \rightarrow 2}(5 x+8)=18$

Answer: Let $\delta=\varepsilon / 5$. If $0<|x-2|<\varepsilon / 5$, then $|5 x+8-18|=5|x-2|<\varepsilon$.
189. $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=6$

Answer: Let $\delta=\varepsilon$. If $0<|x-3|<\varepsilon$, then $|x+3-6|=|x-3|<\varepsilon$.
190. $\lim _{x \rightarrow 2} \frac{2 x^{2}-3 x-2}{x-2}=5$

Answer: Let $\delta=\varepsilon / 2 \ldots$ If $0<|x-2|<\varepsilon / 2$, then $|2 x+1-5|=2|x-2|<\varepsilon$.
191. $\lim _{x \rightarrow 0} x^{4}=0$

Answer: Let $\delta=\sqrt[4]{\varepsilon}$. If $0<|x|<\sqrt[4]{\varepsilon}$, then $\left|x^{4}\right|=x^{4}<\varepsilon$.
192. $\lim _{x \rightarrow 2}\left(x^{2}+2 x\right)=8$

Answer: Let $\delta=\min \{1, \varepsilon / 7\}$. If $0<|x-2|<\delta$ then $\left|x^{2}+2 x-8\right|=|x+4||x-2|<7 \delta<\varepsilon$.
In the following exercises, use the precise definition of limit to prove the given one-sided limits.
193. $\lim _{x \rightarrow 5^{-}} \sqrt{5-x}=0$

Answer: Let $\delta=\varepsilon^{2}$. If $5-\varepsilon^{2}<x<5$, then $|\sqrt{5-x}|=\sqrt{5-x}<\varepsilon$.
194. $\lim _{x \rightarrow 0^{+}} f(x)=-2$, where $f(x)=\left\{\begin{array}{l}8 x-3, \text { if } x<0 \\ 4 x-2, \text { if } x \geq 0\end{array}\right.$.

Answer: Let $\delta=\varepsilon / 4$. If $0<x<\varepsilon / 4$, then $|f(x)+2|=4 x<\varepsilon$.
195. $\lim _{x \rightarrow 1^{-}} f(x)=3$, where $f(x)=\left\{\begin{array}{l}5 x-2, \text { if } x<1 \\ 7 x-1, \text { if } x \geq 1\end{array}\right.$.

Answer: Let $\delta=\varepsilon / 5$. If $1-\varepsilon / 5<x<1$, then $|f(x)-3|=5 x-5<\varepsilon$.
In the following exercises, use the precise definition of limit to prove the given infinite
limits.
196. $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$

Answer: Let $\delta=1 / \sqrt{N}$. If $0<|x|<1 / \sqrt{N}$, then $f(x)=1 / x^{2}>N$.
197. $\lim _{x \rightarrow-1} \frac{3}{(x+1)^{2}}=\infty$

Answer: Let $\delta=\sqrt{\frac{3}{M}}$. If $0<|x+1|<\sqrt{\frac{3}{M}}$, then $f(x)=\frac{3}{(x+1)^{2}}>M$.
198. $\lim _{x \rightarrow 2}-\frac{1}{(x-2)^{2}}=-\infty$

Answer: Let $\delta=1 / \sqrt{N}$. If $0<|x-2|<1 / \delta=1 / \sqrt{N}$, then $f(x)=-1 /(x-2)^{2}>N$.
199. An engineer is using a machine to cut a flat square of Aerogel of area $144 \mathrm{~cm}^{2}$. If there is a maximum error tolerance in the area of $8 \mathrm{~cm}^{2}$, how accurately must the engineer cut on the side, assuming all sides have the same length? How do these numbers relate to δ, ε, a, and L ?
Answer: $0.328 \mathrm{~cm}, \varepsilon=8, \delta=0.33, a=12, L=144$
200. Use the precise definition of limit to prove that the following limit does not exist: $\lim _{x \rightarrow 1} \frac{|x-1|}{x-1}$.
Answer: $\varepsilon=1 / 2, \quad x=2 \pm \delta / 2$
201. Using precise definitions of limits, prove that $\lim _{x \rightarrow 0} f(x)$ does not exist, given that $f(x)$ is the ceiling function. (Hint: Try any $\delta<1$.)
Answer: Answers may vary.
202. Using precise definitions of limits, prove that $\lim _{x \rightarrow 0} f(x)$ does not exist:
$f(x)=\left\{\begin{array}{l}1 \text { if } x \text { is rational } \\ 0 \text { if } x \text { is irrational }\end{array}\right.$. (Hint: Think about how you can always choose a rational number $0<r<d$, but $|f(r)-0|=1$.
Answer: Answers may vary.
203. Using precise definitions of limits, determine $\lim _{x \rightarrow 0} f(x)$ for $f(x)=\left\{\begin{array}{l}x \text { if } x \text { is rational } \\ 0 \text { if } x \text { is irrational }\end{array}\right.$. (Hint: Break into two cases, x rational and x irrational.)
Answer: 0
204. Using the function from the previous exercise, use the precise definition of limits to show that $\lim _{x \rightarrow a} f(x)$ does not exist for $a \neq 0$.
Answer: Answers may vary.
For the following exercises, suppose that $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$ both exist. Use the precise definition of limits to prove the following limit laws:
205. $\lim _{x \rightarrow a}(f(x)+g(x))=L+M$

$$
\lim _{x \rightarrow a}(f(x)+g(x))
$$

Answer: $=\lim _{x \rightarrow a}(f(x))+\lim _{x \rightarrow a}(g(x))$

$$
=L+M
$$

206. $\lim _{x \rightarrow a}[c f(x)]=c L$ for any real constant c (Hint: Consider two cases: $c=0$ and $c \neq 0$.)

Answer: Answers may vary.
207. $\lim _{x \rightarrow a}[f(x) g(x)]=$ LM. (Hint:

$$
\begin{aligned}
& |f(x) g(x)-L M|=|f(x) g(x)-f(x) M+f(x) M-L M| \leq|f(x)||g(x)-M|+|M||f(x)-L| \\
& .)
\end{aligned}
$$

Answer: Answers may vary.

Chapter Review Exercises

True or False. In the following exercises, justify your answer with a proof or a counterexample.
208. A function has to be continuous at $x=a$ if the $\lim _{x \rightarrow a} f(x)$ exists.

Answer: False. We also need $\lim _{x \rightarrow a} f(x)=f(a)$.
209. You can use the quotient rule to evaluate $\lim _{x \rightarrow 0} \frac{\sin x}{x}$.

Answer: False
210. If there is a vertical asymptote at $x=a$ for the function $f(x)$, then f is undefined at the point $x=a$.
Answer: False
211. If $\lim _{x \rightarrow a} f(x)$ does not exist, then f is undefined at the point $x=a$.

Answer: False. A removable discontinuity is possible.
212. Using the graph, find each limit or explain why the limit does not exist.
a. $\lim _{x \rightarrow-1} f(x)$
b. $\lim _{x \rightarrow 1} f(x)$
c. $\lim _{x \rightarrow 0^{+}} f(x)$
d. $\lim _{x \rightarrow 2} f(x)$

Answer: a. DNE; b. 1; c. 0; d. DNE
In the following exercises, evaluate the limit algebraically or explain why the limit does not exist.
213. $\lim _{x \rightarrow 2} \frac{2 x^{2}-3 x-2}{x-2}$

Answer: 5
214. $\lim _{x \rightarrow 0} 3 x^{2}-2 x+4$

Answer: 4
215. $\lim _{x \rightarrow 3} \frac{x^{3}-2 x^{2}-1}{3 x-2}$

Answer: 8/7
216. $\lim _{x \rightarrow \pi / 2} \frac{\cot x}{\cos x}$

Answer: 1
217. $\lim _{x \rightarrow-5} \frac{x^{2}+25}{x+5}$

Answer: DNE
218. $\lim _{x \rightarrow 2} \frac{3 x^{2}-2 x-8}{x^{2}-4}$

Answer: 5/2
219. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{3}-1}$

Answer: 2/3
220. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{\sqrt{x}-1}$

Answer: 4
221. $\lim _{x \rightarrow 4} \frac{4-x}{\sqrt{x}-2}$

Answer: - 4
222. $\lim _{x \rightarrow 4} \frac{1}{\sqrt{x}-2}$

Answer: DNE
In the following exercises, use the squeeze theorem to prove the limit.
223. $\lim _{x \rightarrow 0} x^{2} \cos (2 \pi x)=0$

Answer: Since $-1 \leq \cos (2 \pi x) \leq 1$, then $-x^{2} \leq x^{2} \cos (2 \pi x) \leq x^{2}$. Since $\lim _{x \rightarrow 0} x^{2}=0=\lim _{x \rightarrow 0}-x^{2}$, it follows that $\lim _{x \rightarrow 0} x^{2} \cos (2 \pi x)=0$.
224. $\lim _{x \rightarrow 0} x^{3} \sin \left(\frac{\pi}{x}\right)=0$

Answer: Since $-1 \leq \sin \left(\frac{\pi}{x}\right) \leq 1$, then $-x^{3} \leq x^{3} \sin \left(\frac{\pi}{x}\right) \leq x^{3}$ for $x \geq 0$ and $x^{3} \leq x^{3} \sin \left(\frac{\pi}{x}\right) \leq-x^{3}$ for $x \leq 0$. Since $\lim _{x \rightarrow 0} x^{3}=0=\lim _{x \rightarrow 0}-x^{3}$, it follows that $\lim _{x \rightarrow 0} x^{3} \sin \left(\frac{\pi}{x}\right)=0$.
225. Determine the domain such that the function $f(x)=\sqrt{x-2}+x e^{x}$ is continuous over its domain.
Answer: [2, ∞]
In the following exercises, determine the value of \boldsymbol{c} such that the function remains continuous. Draw your resulting function to ensure it is continuous.
226. $f(x)= \begin{cases}x^{2}+1, & x>c \\ 2 x, & x \leq c\end{cases}$

Answer: $c=1$
227. $f(x)=\left\{\begin{array}{l}\sqrt{x+1}, x>-1 \\ x^{2}+c, x \leq-1\end{array}\right.$

Answer: $c=-1$
In the following exercises, use the precise definition of limit to prove the limit.
228. $\lim _{x \rightarrow 1}(8 x+16)=24$

Answer: $\delta=\varepsilon / 8$
229. $\lim _{x \rightarrow 0} x^{3}=0$

Answer: $\delta=\sqrt[3]{\varepsilon}$
230. A ball is thrown into the air and the vertical position is given by $x(t)=-4.9 t^{2}+25 t+5$.

Use the Intermediate Value Theorem to show that the ball must land on the ground sometime between 5 sec and 6 sec after the throw.
Answer: Since $x(5)>0, x(6)<0$, and $x(t)$ for all values of t, the Intermediate Value Theorem states that there is some value of t in $(5,6)$ where $x(t)=0$.
231. A particle moving along a line has a displacement according to the function $x(t)=t^{2}-2 t+4$, where x is measured in meters and t is measured in seconds. Find the average velocity over the time period $t=[0,2]$.
Answer: $0 \mathrm{~m} / \mathrm{sec}$
232. From the previous exercises, estimate the instantaneous velocity at $t=2$ by checking the average velocity within $t=0.01 \mathrm{sec}$.
Answer: Between $1.99 \mathrm{~m} / \mathrm{sec}$ and $2.01 \mathrm{~m} / \mathrm{sec}$.

This file is copyright 2016, Rice University. All Rights Reserved.

