Chapter 2

Limits

2.3 The Limit Laws

Section Exercises

In the following exercises, use the limit laws to evaluate each limit. Justify each step by indicating the appropriate limit law(s).
83. $\lim _{x \rightarrow 0}\left(4 x^{2}-2 x+3\right)$

Answer: Use constant multiple law and difference law:
$\lim _{x \rightarrow 0}\left(4 x^{2}-2 x+3\right)=4 \lim _{x \rightarrow 0} x^{2}-2 \lim _{x \rightarrow 0} x+\lim _{x \rightarrow 0} 3=3$
84. $\lim _{x \rightarrow 1} \frac{x^{3}+3 x^{2}+5}{4-7 x}$

Answer: Use quotient law: $\lim _{x \rightarrow 1} \frac{x^{3}+3 x^{2}+5}{4-7 x}=\frac{\lim _{x \rightarrow 1}\left(x^{3}+3 x^{2}+5\right)}{\lim _{x \rightarrow 1}(4-7 x)}=-3$
85. $\lim _{x \rightarrow-2} \sqrt{x^{2}-6 x+3}$

Answer: Use root law: $\lim _{x \rightarrow-2} \sqrt{x^{2}-6 x+3}=\sqrt{\lim _{x \rightarrow-2}\left(x^{2}-6 x+3\right)}=\sqrt{19}$
86. $\lim _{x \rightarrow-1}(9 x+1)^{2}$

Answer: Use power law: $\lim _{x \rightarrow-1}(9 x+1)^{2}=\left(\lim _{x \rightarrow-1}(9 x+1)\right)^{2}=64$

In the following exercises, use direct substitution to evaluate each limit.
87. $\lim _{x \rightarrow 7} x^{2}$

Answer: 49
88. $\lim _{x \rightarrow-2}\left(4 x^{2}-1\right)$

Answer: 15
89. $\lim _{x \rightarrow 0} \frac{1}{1+\sin x}$

Answer: 1
90. $\lim _{x \rightarrow 2} e^{2 x-x^{2}}$

Answer: 1
91. $\lim _{x \rightarrow 1} \frac{2-7 x}{x+6}$

Answer: $-\frac{5}{7}$
92. $\lim _{x \rightarrow 3} \ln e^{3 x}$

Answer: 9
In the following exercises, use direct substitution to show that each limit leads to the indeterminate form $0 / 0$. Then, evaluate the limit.
93. $\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}$

Answer: $\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}=\frac{16-16}{4-4}=\frac{0}{0}$; then, $\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}=\lim _{x \rightarrow 4} \frac{(x+4)(x-4)}{x-4}=8$
94. $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-2 x}$

Answer: $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-2 x}=\frac{2-2}{4-4}=\frac{0}{0}$; then, $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-2 x}=\lim _{x \rightarrow 2} \frac{x-2}{x(x-2)}=\frac{1}{2}$
95. $\lim _{x \rightarrow 6} \frac{3 x-18}{2 x-12}$

Answer: $\lim _{x \rightarrow 6} \frac{3 x-18}{2 x-12}=\frac{18-18}{12-12}=\frac{0}{0}$; then, $\lim _{x \rightarrow 6} \frac{3 x-18}{2 x-12}=\lim _{x \rightarrow 6} \frac{3(x-6)}{2(x-6)}=\frac{3}{2}$
96. $\lim _{x \rightarrow 0} \frac{(1+h)^{2}-1}{h}$

Answer: $\lim _{x \rightarrow 0} \frac{(1+h)^{2}-1}{h}=\frac{1-1}{0}=\frac{0}{0}$; then, $\lim _{x \rightarrow 0} \frac{(1+h)^{2}-1}{h}=\lim _{x \rightarrow 0} \frac{1+2 h+h^{2}-1}{h}=\lim _{x \rightarrow 0} \frac{h(h+2)}{h}=2$
97. $\lim _{x \rightarrow 9} \frac{t-9}{\sqrt{t}-3}$

Answer: $\lim _{x \rightarrow 9} \frac{t-9}{\sqrt{t}-3}=\frac{9-9}{3-3}=\frac{0}{0}$; then, $\lim _{t \rightarrow 9} \frac{t-9}{\sqrt{t}-3}=\lim _{t \rightarrow 9} \frac{t-9}{\sqrt{t}-3} \frac{\sqrt{t}+3}{\sqrt{t}+3}=\lim _{t \rightarrow 9}(\sqrt{t}+3)=6$
98. $\lim _{h \rightarrow 0} \frac{\frac{1}{a+h}-\frac{1}{a}}{h}$, where a is a non-zero real-valued constant

Answer: $\lim _{h \rightarrow 0} \frac{\frac{1}{a+h}-\frac{1}{a}}{h}=\frac{\frac{1}{a}-\frac{1}{a}}{0}=\frac{0}{0}$; then, $\lim _{h \rightarrow 0} \frac{\frac{1}{a+h}-\frac{1}{a}}{h}=\lim _{h \rightarrow 0} \frac{\frac{a-(a+h)}{a(a+h)}}{h}=\lim _{h \rightarrow 0} \frac{-h}{h a(a+h)}=-\frac{1}{a^{2}}$
99. $\lim _{\theta \rightarrow \pi} \frac{\sin \theta}{\tan \theta}$

Answer: $\lim _{\theta \rightarrow \pi} \frac{\sin \theta}{\tan \theta}=\frac{\sin \pi}{\tan \pi}=\frac{0}{0}$; then, $\lim _{\theta \rightarrow \pi} \frac{\sin \theta}{\tan \theta}=\lim _{\theta \rightarrow \pi} \frac{\sin \theta}{\frac{\sin \theta}{\cos \theta}}=\lim _{\theta \rightarrow \pi} \cos \theta=-1$
100. $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}$

Answer: $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}=\frac{1-1}{1-1}=\frac{0}{0}$; then, $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{2}+x+1\right)}{(x+1)(x-1)}=\frac{3}{2}$
101. $\lim _{x \rightarrow 1 / 2} \frac{2 x^{2}+3 x-2}{2 x-1}$

Answer: $\lim _{x \rightarrow 1 / 2} \frac{2 x^{2}+3 x-2}{2 x-1}=\frac{\frac{1}{2}+\frac{3}{2}-2}{1-1}=\frac{0}{0}$; then, $\lim _{x \rightarrow 1 / 2} \frac{2 x^{2}+3 x-2}{2 x-1}=\lim _{x \rightarrow 1 / 2} \frac{(2 x-1)(x+2)}{2 x-1}=\frac{5}{2}$
102. $\lim _{x \rightarrow-3} \frac{\sqrt{x+4}-1}{x+3}$

Answer: $\lim _{x \rightarrow-3} \frac{\sqrt{x+4}-1}{x+3}=\frac{1-1}{-3+3}=\frac{0}{0}$; then,
$\lim _{x \rightarrow-3} \frac{\sqrt{x+4}-1}{x+3}=\lim _{x \rightarrow-3} \frac{\sqrt{x+4}-1}{x+3} \frac{\sqrt{x+4}+1}{\sqrt{x+4}+1}=\lim _{x \rightarrow-3} \frac{1}{\sqrt{x+4}+1}=\frac{1}{2}$
In the following exercises, use direct substitution to obtain an undefined expression. Then, use the method of Example_02_03_11 to simplify the function to help determine the limit.
103. $\lim _{x \rightarrow-2^{-}} \frac{2 x^{2}+7 x-4}{x^{2}+x-2}$

Answer: - ∞
104. $\lim _{x \rightarrow-2^{+}} \frac{2 x^{2}+7 x-4}{x^{2}+x-2}$

Answer: $+\infty$
105. $\lim _{x \rightarrow 1^{-}} \frac{2 x^{2}+7 x-4}{x^{2}+x-2}$

Answer: $-\infty$
106. $\lim _{x \rightarrow 1^{+}} \frac{2 x^{2}+7 x-4}{x^{2}+x-2}$

Answer: $+\infty$
In the following exercises, assume that $\lim _{x \rightarrow 6} f(x)=4, \lim _{x \rightarrow 6} g(x)=9$, and $\lim _{x \rightarrow 6} h(x)=6$. Use these three facts and the limit laws to evaluate each limit.
107. $\lim _{x \rightarrow 6} 2 f(x) g(x)$

Answer: $\lim _{x \rightarrow 6} 2 f(x) g(x)=2 \lim _{x \rightarrow 6} f(x) \lim _{x \rightarrow 6} g(x)=72$
108. $\lim _{x \rightarrow 6} \frac{g(x)-1}{f(x)}$

Answer: $\lim _{x \rightarrow 6} \frac{g(x)-1}{f(x)}=\frac{\lim _{x \rightarrow 6}(g(x))-1}{\lim _{x \rightarrow 6} f(x)}=2$
109. $\lim _{x \rightarrow 6}\left(f(x)+\frac{1}{3} g(x)\right)$

Answer: $\lim _{x \rightarrow 6}\left(f(x)+\frac{1}{3} g(x)\right)=\lim _{x \rightarrow 6} f(x)+\frac{1}{3} \lim _{x \rightarrow 6} g(x)=7$
110. $\lim _{x \rightarrow 6} \frac{(h(x))^{3}}{2}$

Answer: $\lim _{x \rightarrow 6} \frac{(h(x))^{3}}{2}=\frac{1}{2}\left(\lim _{x \rightarrow 6} h(x)\right)^{3}=108$
111. $\lim _{x \rightarrow 6} \sqrt{g(x)-f(x)}$

Answer: $\lim _{x \rightarrow 6} \sqrt{g(x)-f(x)}=\sqrt{\lim _{x \rightarrow 6} g(x)-\lim _{x \rightarrow 6} f(x)}=\sqrt{5}$
112. $\lim _{x \rightarrow 6} x \cdot h(x)$

Answer: $\lim _{x \rightarrow 6} x h(x)=\left(\lim _{x \rightarrow 6} x\right)\left(\lim _{x \rightarrow 6} h(x)\right)=36$
113. $\lim _{x \rightarrow 6}[(x+1) \cdot f(x)]$

Answer: $\lim _{x \rightarrow 6}[(x+1) f(x)]=\left(\lim _{x \rightarrow 6}(x+1)\right)\left(\lim _{x \rightarrow 6} f(x)\right)=28$
114. $\lim _{x \rightarrow 6}(f(x) \cdot g(x)-h(x))$

Answer: $\lim _{x \rightarrow 6}(f(x) g(x)-h(x))=\left(\lim _{x \rightarrow 6} f(x)\right)\left(\lim _{x \rightarrow 6} g(x)\right)-\lim _{x \rightarrow 6} h(x)=30$
[T] In the following exercises, use a calculator to draw the graph of each piecewise-defined function and study the graph to evaluate the given limits.
115. $f(x)= \begin{cases}x^{2}, & x \leq 3 \\ x+4, & x>3\end{cases}$
a. $\lim _{x \rightarrow 3^{-}} f(x)$
b. $\lim _{x \rightarrow 3^{+}} f(x)$

Answer:

a. 9; b. 7
116. $g(x)=\left\{\begin{aligned} x^{3}-1, & x \leq 0 \\ 1, & x>0\end{aligned}\right.$
a. $\lim _{x \rightarrow 0^{-}} g(x)$
b. $\lim _{x \rightarrow 0^{+}} g(x)$

Answer:

a. -1 ; b. 1
117. $h(x)= \begin{cases}x^{2}-2 x+1, & x<2 \\ 3-x, & x \geq 2\end{cases}$
a. $\lim _{x \rightarrow 2^{-}} h(x)$
b. $\lim _{x \rightarrow 2^{+}} h(x)$

Answer:

a. 1; b. 1

In the following exercises, use the following graphs and the limit laws to evaluate each limit.

$y=g(x)$
118. $\lim _{x \rightarrow-3^{+}}(f(x)+g(x))$

Answer: $\lim _{x \rightarrow-3^{+}}(f(x)+g(x))=\lim _{x \rightarrow-3^{+}} f(x)+\lim _{x \rightarrow-3^{+}} g(x)=-2+2=0$
119. $\lim _{x \rightarrow-3^{-}}(f(x)-3 g(x))$

Answer: $\lim _{x \rightarrow-3^{-}}(f(x)-3 g(x))=\lim _{x \rightarrow-3^{-}} f(x)-3 \lim _{x \rightarrow-3^{-}} g(x)=0+6=6$
120. $\lim _{x \rightarrow 0} \frac{f(x) g(x)}{3}$

Answer: $\lim _{x \rightarrow 0} \frac{f(x) g(x)}{3}=\frac{1}{3}\left(\lim _{x \rightarrow 0} f(x)\right)\left(\lim _{x \rightarrow 0} g(x)\right)=\frac{1}{3}(1)\left(-\frac{7}{3}\right)=-\frac{7}{9}$
121. $\lim _{x \rightarrow-5} \frac{2+g(x)}{f(x)}$

Answer: $\lim _{x \rightarrow-5} \frac{2+g(x)}{f(x)}=\frac{2+\left(\lim _{x \rightarrow-5} g(x)\right)}{\lim _{x \rightarrow-5} f(x)}=\frac{2+0}{2}=1$
122. $\lim _{x \rightarrow 1}(f(x))^{2}$

Answer: $\lim _{x \rightarrow 1}(f(x))^{2}=\left(\lim _{x \rightarrow 1} f(x)\right)^{2}=2^{2}=4$
123. $\lim _{x \rightarrow 1} \sqrt{f(x)-g(x)}$

Answer: $\lim _{x \rightarrow 1} \sqrt[3]{f(x)-g(x)}=\sqrt[3]{\lim _{x \rightarrow 1} f(x)-\lim _{x \rightarrow 1} g(x)}=\sqrt[3]{2+5}=\sqrt[3]{7}$
124. $\lim _{x \rightarrow-7}(x \cdot g(x))$

Answer: $\lim _{x \rightarrow-7}(x g(x))=\left(\lim _{x \rightarrow-7}(x)\right)\left(\lim _{x \rightarrow-7}(g(x))\right)=(-7)(2)=-14$
125. $\lim _{x \rightarrow-9}[x \cdot f(x)+2 \cdot g(x)]$

Answer: $\lim _{x \rightarrow-9}(x f(x)+2 g(x))=\left(\lim _{x \rightarrow-9} x\right)\left(\lim _{x \rightarrow-9} f(x)\right)+2 \lim _{x \rightarrow-9}(g(x))=(-9)(6)+2(4)=-46$
126. [T] True or False? If $2 x-1 \leq g(x) \leq x^{2}-2 x+3$, then $\lim _{x \rightarrow 2} g(x)=0$.

Answer: False; by the squeeze theorem, the limit is 3 .

For the following problems, evaluate the limit using the squeeze theorem. Use a calculator to graph the functions $f(x), g(x)$, and $h(x)$ when possible.
127. $[\mathbf{T}] \lim _{\theta \rightarrow 0} \theta^{2} \cos \left(\frac{1}{\theta}\right)$

Answer: The limit is zero.

128. $\lim _{x \rightarrow 0} f(x)$, where $f(x)= \begin{cases}0, & x \text { rational } \\ x^{2}, & x \text { irrrational }\end{cases}$

Answer: The limit is zero. (Hint: $0 \leq f(x) \leq x^{2}$)
129. [T] In physics, the magnitude of an electric field generated by a point charge at a distance r in vacuum is governed by Coulomb's law: $E(r)=\frac{q}{4 \pi \varepsilon_{0} r^{2}}$, where E represents the magnitude of the electric field, q is the charge of the particle, r is the distance between the particle and where the strength of the field is measured, and $\frac{1}{4 \pi \varepsilon_{0}}$ is Coulomb's constant: $8.988 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$.
a. Use a graphing calculator to graph $E(r)$ given that the charge of the particle is $q=10^{-10}$.
b. Evaluate $\lim _{r \rightarrow 0^{+}} E(r)$. What is the physical meaning of this quantity? Is it physically relevant? Why are you evaluating from the right?
Answer: a.

b. ∞. The magnitude of the electric field as you approach the particle q becomes infinite. It does not make physical sense to evaluate negative distance.
130. [T] The density of an object is given by its mass divided by its volume: $\rho=m / V$.
a. Use a calculator to plot the volume as a function of density $(V=m / \rho)$, assuming you are examining something of mass $8 \mathrm{~kg}(m=8)$.
b. Evaluate $\lim _{x \rightarrow 0^{+}} V(r)$ and explain the physical meaning.

Answer: a.

b. ∞. As the density of the material becomes smaller and smaller, more and more volume is required to reach a mass of 8 kg .

Student Project
 Deriving the Formula for the Area of a Circle

1. Express the height h and the base b of the isosceles triangle in the figure below in terms of θ and r.

Answer: 1. $b=2 r \sin \left(\frac{\theta}{2}\right)$ and $h=r \cos \left(\frac{\theta}{2}\right)$
2. Using the expressions that you obtained in step 1, express the area of the isosceles triangle in terms of θ and r. (Substitute (1/2) sin for $\sin (/ 2) \cos (/ 2)$ in your expression.)
Answer: $A=\frac{1}{2} b h=r^{2} \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right)=\frac{1}{2} r^{2} \sin \theta$
3. If an n-sided regular polygon is inscribed in a circle of radius r, find a relationship between θ and n. Solve this for n. Keep in mind there are 2π radians in a circle. (Use radians, not degrees.)
Answer: $n=\frac{2 \pi}{\theta}$
4. Find an expression for the area of the n-sided polygon in terms of r and θ.

Answer: Area of n-sided inscribed polygon $=n A=\frac{\pi r^{2} \sin \theta}{\theta}$
5. To find a formula for the area of the circle, find the limit of the expression in step 4 as θ goes to zero. (Hint: $\lim _{\theta \rightarrow 0} \frac{(\sin \theta)}{\theta}=1$).
Answer: Area of circle $\lim _{\theta \rightarrow 0} \frac{\pi r^{2} \sin \theta}{\theta}=\pi r^{2}$

This file is copyright 2016, Rice University. All Rights Reserved.

