6.2 EXERCISES

58. Derive the formula for the volume of a sphere using the slicing method.

59. Use the slicing method to derive the formula for the volume of a cone.

60. Use the slicing method to derive the formula for the volume of a tetrahedron with side length *a*.

61. Use the disk method to derive the formula for the volume of a trapezoidal cylinder.

62. Explain when you would use the disk method versus the washer method. When are they interchangeable?

For the following exercises, draw a typical slice and find the volume using the slicing method for the given volume.

63. A pyramid with height 6 units and square base of side 2 units, as pictured here.

64. A pyramid with height 4 units and a rectangular base with length 2 units and width 3 units, as pictured here.

65. A tetrahedron with a base side of 4 units, as seen here.

66. A pyramid with height 5 units, and an isosceles triangular base with lengths of 6 units and 8 units, as seen here.

67. A cone of radius r and height h has a smaller cone of radius r/2 and height h/2 removed from the top, as seen here. The resulting solid is called a *frustum*.

For the following exercises, draw an outline of the solid and find the volume using the slicing method.

68. The base is a circle of radius *a*. The slices perpendicular to the base are squares.

69. The base is a triangle with vertices (0, 0), (1, 0), and (0, 1). Slices perpendicular to the *x*-axis are semicircles.

70. The base is the region under the parabola $y = 1 - x^2$ in the first quadrant. Slices perpendicular to the *xy*-plane are squares.

71. The base is the region under the parabola $y = 1 - x^2$ and above the *x*-axis. Slices perpendicular to the *y*-axis are squares.

_

72. The base is the region enclosed by $y = x^2$ and y = 9. Slices perpendicular to the *x*-axis are right isosceles triangles. The intersection of one of these slices and the base is the leg of the triangle.

73. The base is the area between y = x and $y = x^2$. Slices perpendicular to the *x*-axis are semicircles.

For the following exercises, draw the region bounded by the curves. Then, use the disk method to find the volume when the region is rotated around the *x*-axis.

74.
$$x + y = 8$$
, $x = 0$, and $y = 0$
75. $y = 2x^2$, $x = 0$, $x = 4$, and $y = 0$
76. $y = e^x + 1$, $x = 0$, $x = 1$, and $y = 0$
77. $y = x^4$, $x = 0$, and $y = 1$
78. $y = \sqrt{x}$, $x = 0$, $x = 4$, and $y = 0$
79. $y = \sin x$, $y = \cos x$, and $x = 0$
80. $y = \frac{1}{x}$, $x = 2$, and $y = 3$

81.
$$x^2 - y^2 = 9$$
 and $x + y = 9$, $y = 0$ and $x = 0$

For the following exercises, draw the region bounded by the curves. Then, find the volume when the region is rotated around the *y*-axis.

82.
$$y = 4 - \frac{1}{2}x$$
, $x = 0$, and $y = 0$
83. $y = 2x^3$, $x = 0$, $x = 1$, and $y = 0$
84. $y = 3x^2$, $x = 0$, and $y = 3$
85. $y = \sqrt{4 - x^2}$, $y = 0$, and $x = 0$
86. $y = \frac{1}{\sqrt{x + 1}}$, $x = 0$, and $x = 3$
87. $x = \sec(y)$ and $y = \frac{\pi}{4}$, $y = 0$ and $x = 0$
88. $y = \frac{1}{x + 1}$, $x = 0$, and $x = 2$
89. $y = 4 - x$, $y = x$, and $x = 0$

For the following exercises, draw the region bounded by the curves. Then, find the volume when the region is rotated around the *x*-axis.

90.
$$y = x + 2$$
, $y = x + 6$, $x = 0$, and $x = 5$
91. $y = x^2$ and $y = x + 2$
92. $x^2 = y^3$ and $x^3 = y^2$
93. $y = 4 - x^2$ and $y = 2 - x$
94. **[T]** $y = \cos x$, $y = e^{-x}$, $x = 0$, and $x = 1.2927$
95. $y = \sqrt{x}$ and $y = x^2$
96. $y = \sin x$, $y = 5 \sin x$, $x = 0$ and $x = \pi$
97. $y = \sqrt{1 + x^2}$ and $y = \sqrt{4 - x^2}$
For the following exercises, draw the region bounder
the curves. Then use the washer method to find the value of the following the set of the set o

F nded by the curves. Then, use the washer method to find the volume when the region is revolved around the *y*-axis.

98.
$$y = \sqrt{x}, x = 4$$
, and $y = 0$
99. $y = x + 2, y = 2x - 1$, and $x = 0$
100. $y = \sqrt[3]{x}$ and $y = x^{3}$
101. $x = e^{2y}, x = y^{2}, y = 0$, and $y = \ln(2)$

102.
$$x = \sqrt{9 - y^2}, x = e^{-y}, y = 0, \text{ and } y = 3$$

103. Yogurt containers can be shaped like frustums. Rotate the line $y = \frac{1}{m}x$ around the *y*-axis to find the volume between y = a and y = b.

104. Rotate the ellipse $(x^2/a^2) + (y^2/b^2) = 1$ around the *x*-axis to approximate the volume of a football, as seen here.

105. Rotate the ellipse $(x^2/a^2) + (y^2/b^2) = 1$ around the *y*-axis to approximate the volume of a football.

106. A better approximation of the volume of a football is given by the solid that comes from rotating $y = \sin x$ around the *x*-axis from x = 0 to $x = \pi$. What is the volume of this football approximation, as seen here?

107. What is the volume of the Bundt cake that comes from rotating $y = \sin x$ around the *y*-axis from x = 0 to $x = \pi$?

For the following exercises, find the volume of the solid described.

108. The base is the region between y = x and $y = x^2$. Slices perpendicular to the *x*-axis are semicircles.

109. The base is the region enclosed by the generic ellipse $(x^2/a^2) + (y^2/b^2) = 1$. Slices perpendicular to the *x*-axis are semicircles.

110. Bore a hole of radius *a* down the axis of a right cone and through the base of radius *b*, as seen here.

113. Find the volume of a sphere of radius R with a cap of height h removed from the top, as seen here.

111. Find the volume common to two spheres of radius r with centers that are 2h apart, as shown here.

112. Find the volume of a spherical cap of height h and radius r where h < r, as seen here.

