6.2 EXERCISES

58. Derive the formula for the volume of a sphere using the slicing method.
59. Use the slicing method to derive the formula for the volume of a cone.
60. Use the slicing method to derive the formula for the volume of a tetrahedron with side length a.
61. Use the disk method to derive the formula for the volume of a trapezoidal cylinder.
62. Explain when you would use the disk method versus the washer method. When are they interchangeable?

For the following exercises, draw a typical slice and find the volume using the slicing method for the given volume.
63. A pyramid with height 6 units and square base of side 2 units, as pictured here.

64. A pyramid with height 4 units and a rectangular base with length 2 units and width 3 units, as pictured here.

65. A tetrahedron with a base side of 4 units, as seen here.

66. A pyramid with height 5 units, and an isosceles triangular base with lengths of 6 units and 8 units, as seen here.

67. A cone of radius r and height h has a smaller cone of radius $r / 2$ and height $h / 2$ removed from the top, as seen here. The resulting solid is called a frustum.

For the following exercises, draw an outline of the solid and find the volume using the slicing method.
68. The base is a circle of radius a. The slices perpendicular to the base are squares.
69. The base is a triangle with vertices $(0,0),(1,0)$, and $(0,1)$. Slices perpendicular to the x-axis are semicircles.
70. The base is the region under the parabola $y=1-x^{2}$ in the first quadrant. Slices perpendicular to the $x y$-plane are squares.
71. The base is the region under the parabola $y=1-x^{2}$ and above the x-axis. Slices perpendicular to the y-axis are squares.
72. The base is the region enclosed by $y=x^{2}$ and $y=9$. Slices perpendicular to the x-axis are right isosceles triangles. The intersection of one of these slices and the base is the leg of the triangle.
73. The base is the area between $y=x$ and $y=x^{2}$. Slices perpendicular to the x-axis are semicircles.

For the following exercises, draw the region bounded by the curves. Then, use the disk method to find the volume when the region is rotated around the x-axis.
74. $x+y=8, x=0$, and $y=0$
75. $y=2 x^{2}, x=0, x=4$, and $y=0$
76. $y=e^{x}+1, x=0, x=1$, and $y=0$
77. $y=x^{4}, x=0$, and $y=1$
78. $y=\sqrt{x}, x=0, x=4$, and $y=0$
79. $y=\sin x, y=\cos x$, and $x=0$
80. $y=\frac{1}{x}, x=2$, and $y=3$
81. $x^{2}-y^{2}=9$ and $x+y=9, y=0$ and $x=0$

For the following exercises, draw the region bounded by the curves. Then, find the volume when the region is rotated around the y-axis.
82. $y=4-\frac{1}{2} x, x=0$, and $y=0$
83. $y=2 x^{3}, x=0, x=1$, and $y=0$
84. $y=3 x^{2}, x=0$, and $y=3$
85. $y=\sqrt{4-x^{2}}, y=0$, and $x=0$
86. $y=\frac{1}{\sqrt{x+1}}, x=0$, and $x=3$
87. $x=\sec (y)$ and $y=\frac{\pi}{4}, y=0$ and $x=0$
88. $y=\frac{1}{x+1}, x=0$, and $x=2$
89. $y=4-x, y=x$, and $x=0$

For the following exercises, draw the region bounded by the curves. Then, find the volume when the region is
rotated around the x-axis.
90. $y=x+2, y=x+6, x=0$, and $x=5$
91. $y=x^{2}$ and $y=x+2$
92. $x^{2}=y^{3}$ and $x^{3}=y^{2}$
93. $y=4-x^{2}$ and $y=2-x$
94. [T] $y=\cos x, y=e^{-x}, x=0$, and $x=1.2927$
95. $y=\sqrt{x}$ and $y=x^{2}$
96. $y=\sin x, y=5 \sin x, x=0$ and $x=\pi$
97. $y=\sqrt{1+x^{2}}$ and $y=\sqrt{4-x^{2}}$

For the following exercises, draw the region bounded by the curves. Then, use the washer method to find the volume when the region is revolved around the y-axis.
98. $y=\sqrt{x}, x=4$, and $y=0$
99. $y=x+2, y=2 x-1$, and $x=0$
100. $y=\sqrt[3]{x}$ and $y=x^{3}$
101. $x=e^{2 y}, x=y^{2}, y=0$, and $y=\ln (2)$
102. $x=\sqrt{9-y^{2}}, x=e^{-y}, y=0$, and $y=3$
103. Yogurt containers can be shaped like frustums. Rotate the line $y=\frac{1}{m} x$ around the y-axis to find the volume between $y=a$ and $y=b$.

104. Rotate the ellipse $\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1$ around the x-axis to approximate the volume of a football, as seen here.

105. Rotate the ellipse $\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1$ around the y-axis to approximate the volume of a football.
106. A better approximation of the volume of a football is given by the solid that comes from rotating $y=\sin x$ around the x-axis from $x=0$ to $x=\pi$. What is the volume of this football approximation, as seen here?

107. What is the volume of the Bundt cake that comes from rotating $y=\sin x$ around the y-axis from $x=0$ to $x=\pi$?

For the following exercises, find the volume of the solid described.
108. The base is the region between $y=x$ and $y=x^{2}$. Slices perpendicular to the x-axis are semicircles.
109. The base is the region enclosed by the generic ellipse $\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1$. Slices perpendicular to the x-axis are semicircles.
110. Bore a hole of radius a down the axis of a right cone and through the base of radius b, as seen here.

111. Find the volume common to two spheres of radius r with centers that are $2 h$ apart, as shown here.

112. Find the volume of a spherical cap of height h and radius r where $h<r$, as seen here.

113. Find the volume of a sphere of radius R with a cap of height h removed from the top, as seen here.

