
6.4 EXERCISES
For the following exercises, find the length of the functions
over the given interval.

165. y = 5x from x = 0 to x = 2

166. y = − 1
2x + 25 from x = 1 to x = 4

167. x = 4y from y = −1 to y = 1

168. Pick an arbitrary linear function x = g(y) over any

interval of your choice (y1, y2). Determine the length of

the function and then prove the length is correct by using
geometry.

169. Find the surface area of the volume generated when
the curve y = x revolves around the x-axis from (1, 1)
to (4, 2), as seen here.

170. Find the surface area of the volume generated when

the curve y = x2 revolves around the y-axis from (1, 1)
to (3, 9).

For the following exercises, find the lengths of the
functions of x over the given interval. If you cannot

evaluate the integral exactly, use technology to
approximate it.

171. y = x3/2 from (0, 0) to (1, 1)

172. y = x2/3 from (1, 1) to (8, 4)

173. y = 1
3
⎛
⎝x2 + 2⎞⎠

3/2
from x = 0 to x = 1

174. y = 1
3
⎛
⎝x2 − 2⎞⎠

3/2
from x = 2 to x = 4

175. [T] y = ex on x = 0 to x = 1

176. y = x3

3 + 1
4x from x = 1 to x = 3

177. y = x4

4 + 1
8x2 from x = 1 to x = 2

178. y = 2x3/2

3 − x1/2

2 from x = 1 to x = 4

179. y = 1
27
⎛
⎝9x2 + 6⎞⎠

3/2
from x = 0 to x = 2

180. [T] y = sin x on x = 0 to x = π

For the following exercises, find the lengths of the
functions of y over the given interval. If you cannot

evaluate the integral exactly, use technology to
approximate it.

181. y = 5 − 3x
4 from y = 0 to y = 4

182. x = 1
2
⎛
⎝ey + e−y⎞

⎠ from y = −1 to y = 1

183. x = 5y3/2 from y = 0 to y = 1

184. [T] x = y2 from y = 0 to y = 1

185. x = y from y = 0 to y = 1

186. x = 2
3
⎛
⎝y2 + 1⎞⎠

3/2
from y = 1 to y = 3

187. [T] x = tan y from y = 0 to y = 3
4

188. [T] x = cos2 y from y = − π
2 to y = π

2
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189. [T] x = 4y from y = 0 to y = 2

190. [T] x = ln(y) on y = 1
e to y = e

For the following exercises, find the surface area of the
volume generated when the following curves revolve
around the x-axis. If you cannot evaluate the integral

exactly, use your calculator to approximate it.

191. y = x from x = 2 to x = 6

192. y = x3 from x = 0 to x = 1

193. y = 7x from x = −1 to x = 1

194. [T] y = 1
x2 from x = 1 to x = 3

195. y = 4 − x2 from x = 0 to x = 2

196. y = 4 − x2 from x = −1 to x = 1

197. y = 5x from x = 1 to x = 5

198. [T] y = tan x from x = − π
4 to x = π

4

For the following exercises, find the surface area of the
volume generated when the following curves revolve
around the y-axis. If you cannot evaluate the integral

exactly, use your calculator to approximate it.

199. y = x2 from x = 0 to x = 2

200. y = 1
2x

2 + 1
2 from x = 0 to x = 1

201. y = x + 1 from x = 0 to x = 3

202. [T] y = 1
x from x = 1

2 to x = 1

203. y = x3 from x = 1 to x = 27

204. [T] y = 3x4 from x = 0 to x = 1

205. [T] y = 1
x from x = 1 to x = 3

206. [T] y = cos x from x = 0 to x = π
2

207. The base of a lamp is constructed by revolving a

quarter circle y = 2x − x2 around the y-axis from

x = 1 to x = 2, as seen here. Create an integral for the

surface area of this curve and compute it.

208. A light bulb is a sphere with radius 1/2 in. with the

bottom sliced off to fit exactly onto a cylinder of radius
1/4 in. and length 1/3 in., as seen here. The sphere is

cut off at the bottom to fit exactly onto the cylinder, so
the radius of the cut is 1/4 in. Find the surface area (not

including the top or bottom of the cylinder).

209. [T] A lampshade is constructed by rotating y = 1/x
around the x-axis from y = 1 to y = 2, as seen here.

Determine how much material you would need to construct
this lampshade—that is, the surface area—accurate to four
decimal places.

210. [T] An anchor drags behind a boat according to

the function y = 24e−x/2 − 24, where y represents the

depth beneath the boat and x is the horizontal distance of

the anchor from the back of the boat. If the anchor is 23 ft

below the boat, how much rope do you have to pull to reach
the anchor? Round your answer to three decimal places.
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211. [T] You are building a bridge that will span 10
ft. You intend to add decorative rope in the shape of
y = 5|sin⎛⎝(xπ)/5⎞⎠|, where x is the distance in feet from

one end of the bridge. Find out how much rope you need to
buy, rounded to the nearest foot.

For the following exercises, find the exact arc length for the
following problems over the given interval.

212. y = ln(sin x) from x = π/4 to x = (3π)/4. (Hint:

Recall trigonometric identities.)

213. Draw graphs of y = x2, y = x6, and y = x10.
For y = xn, as n increases, formulate a prediction on

the arc length from (0, 0) to (1, 1). Now, compute the

lengths of these three functions and determine whether your
prediction is correct.

214. Compare the lengths of the parabola x = y2 and the

line x = by from (0, 0) to ⎛⎝b2, b⎞⎠ as b increases. What

do you notice?

215. Solve for the length of x = y2 from

(0, 0) to (1, 1). Show that x = (1/2)y2 from (0, 0) to

(2, 2) is twice as long. Graph both functions and explain

why this is so.

216. [T] Which is longer between (1, 1) and (2, 1/2):
the hyperbola y = 1/x or the graph of x + 2y = 3?

217. Explain why the surface area is infinite when
y = 1/x is rotated around the x-axis for 1 ≤ x < ∞,
but the volume is finite.
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