
6.6 EXERCISES
For the following exercises, calculate the center of mass for
the collection of masses given.

254. m1 = 2 at x1 = 1 and m2 = 4 at x2 = 2

255. m1 = 1 at x1 = −1 and m2 = 3 at x2 = 2

256. m = 3 at x = 0, 1, 2, 6

257. Unit masses at (x, y) = (1, 0), (0, 1), (1, 1)

258. m1 = 1 at (1, 0) and m2 = 4 at (0, 1)

259. m1 = 1 at (1, 0) and m2 = 3 at (2, 2)

For the following exercises, compute the center of mass
x– .

260. ρ = 1 for x ∈ (−1, 3)

261. ρ = x2 for x ∈ (0, L)

262. ρ = 1 for x ∈ (0, 1) and ρ = 2 for x ∈ (1, 2)

263. ρ = sin x for x ∈ (0, π)

264. ρ = cos x for x ∈ ⎛⎝0, π2
⎞
⎠

265. ρ = ex for x ∈ (0, 2)

266. ρ = x3 + xe−x for x ∈ (0, 1)

267. ρ = x sin x for x ∈ (0, π)

268. ρ = x for x ∈ (1, 4)

269. ρ = ln x for x ∈ (1, e)

For the following exercises, compute the center of mass
⎛
⎝ x– , y– ⎞⎠. Use symmetry to help locate the center of mass

whenever possible.

270. ρ = 7 in the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

271. ρ = 3 in the triangle with vertices (0, 0), (a, 0),
and (0, b)

272. ρ = 2 for the region bounded by y = cos(x),

y = −cos(x), x = − π
2, and x = π

2

For the following exercises, use a calculator to draw the
region, then compute the center of mass ⎛

⎝ x– , y– ⎞⎠. Use

symmetry to help locate the center of mass whenever
possible.

273. [T] The region bounded by y = cos(2x),

x = − π
4, and x = π

4

274. [T] The region between y = 2x2, y = 0, x = 0,
and x = 1

275. [T] The region between y = 5
4x

2 and y = 5

276. [T] Region between y = x, y = ln(x), x = 1,
and x = 4

277. [T] The region bounded by y = 0, x2

4 + y2

9 = 1

278. [T] The region bounded by y = 0, x = 0, and

x2

4 + y2

9 = 1

279. [T] The region bounded by y = x2 and y = x4 in

the first quadrant

For the following exercises, use the theorem of Pappus to
determine the volume of the shape.

280. Rotating y = mx around the x -axis between x = 0
and x = 1

281. Rotating y = mx around the y -axis between x = 0
and x = 1

282. A general cone created by rotating a triangle with
vertices (0, 0), (a, 0), and (0, b) around the y -axis.

Does your answer agree with the volume of a cone?

283. A general cylinder created by rotating a rectangle
with vertices (0, 0), (a, 0), (0, b), and (a, b) around

the y -axis. Does your answer agree with the volume of a

cylinder?

284. A sphere created by rotating a semicircle with radius
a around the y -axis. Does your answer agree with the

volume of a sphere?

For the following exercises, use a calculator to draw the
region enclosed by the curve. Find the area M and the
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centroid ⎛
⎝ x– , y– ⎞⎠ for the given shapes. Use symmetry to

help locate the center of mass whenever possible.

285. [T] Quarter-circle: y = 1 − x2, y = 0, and

x = 0

286. [T] Triangle: y = x, y = 2 − x, and y = 0

287. [T] Lens: y = x2 and y = x

288. [T] Ring: y2 + x2 = 1 and y2 + x2 = 4

289. [T] Half-ring: y2 + x2 = 1, y2 + x2 = 4, and

y = 0

290. Find the generalized center of mass in the sliver

between y = xa and y = xb with a > b. Then, use the

Pappus theorem to find the volume of the solid generated
when revolving around the y-axis.

291. Find the generalized center of mass between

y = a2 − x2, x = 0, and y = 0. Then, use the Pappus

theorem to find the volume of the solid generated when
revolving around the y-axis.

292. Find the generalized center of mass between
y = b sin(ax), x = 0, and x = π

a . Then, use the

Pappus theorem to find the volume of the solid generated
when revolving around the y-axis.

293. Use the theorem of Pappus to find the volume of
a torus (pictured here). Assume that a disk of radius a
is positioned with the left end of the circle at x = b,
b > 0, and is rotated around the y-axis.

294. Find the center of mass ⎛⎝ x– , y– ⎞⎠ for a thin wire along

the semicircle y = 1 − x2 with unit mass. (Hint: Use the

theorem of Pappus.)
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