6.6 EXERCISES

For the following exercises, calculate the center of mass for the collection of masses given.
254. $m_{1}=2$ at $x_{1}=1$ and $m_{2}=4$ at $x_{2}=2$
255. $m_{1}=1$ at $x_{1}=-1$ and $m_{2}=3$ at $x_{2}=2$
256. $m=3$ at $x=0,1,2,6$
257. Unit masses at $(x, y)=(1,0),(0,1),(1,1)$
258. $m_{1}=1$ at $(1,0)$ and $m_{2}=4$ at $(0,1)$
259. $m_{1}=1$ at $(1,0)$ and $m_{2}=3$ at $(2,2)$

For the following exercises, compute the center of mass \bar{x}.
260. $\rho=1$ for $x \in(-1,3)$
261. $\rho=x^{2}$ for $x \in(0, L)$
262. $\rho=1$ for $x \in(0,1)$ and $\rho=2$ for $x \in(1,2)$
263. $\rho=\sin x$ for $x \in(0, \pi)$
264. $\rho=\cos x$ for $x \in\left(0, \frac{\pi}{2}\right)$
265. $\rho=e^{x}$ for $x \in(0,2)$
266. $\rho=x^{3}+x e^{-x}$ for $x \in(0,1)$
267. $\rho=x \sin x$ for $x \in(0, \pi)$
268. $\rho=\sqrt{x}$ for $x \in(1,4)$
269. $\rho=\ln x$ for $x \in(1, e)$

For the following exercises, compute the center of mass (\bar{x}, \bar{y}). Use symmetry to help locate the center of mass whenever possible.
270. $\rho=7$ in the square $0 \leq x \leq 1, \quad 0 \leq y \leq 1$
271. $\rho=3$ in the triangle with vertices $(0,0),(a, 0)$, and $(0, b)$
272. $\rho=2$ for the region bounded by $y=\cos (x)$, $y=-\cos (x), \quad x=-\frac{\pi}{2}, \quad$ and $x=\frac{\pi}{2}$

For the following exercises, use a calculator to draw the region, then compute the center of mass (\bar{x}, \bar{y}). Use symmetry to help locate the center of mass whenever possible.
273. [T] The region bounded by $y=\cos (2 x)$, $x=-\frac{\pi}{4}$, and $x=\frac{\pi}{4}$
274. [T] The region between $y=2 x^{2}, \quad y=0, \quad x=0$, and $x=1$
275. [T] The region between $y=\frac{5}{4} x^{2}$ and $y=5$
276. [T] Region between $y=\sqrt{x}, \quad y=\ln (x), \quad x=1$, and $x=4$
277. [T] The region bounded by $y=0, \quad \frac{x^{2}}{4}+\frac{y^{2}}{9}=1$
278. [T] The region bounded by $y=0, x=0$, and $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$
279. [T] The region bounded by $y=x^{2}$ and $y=x^{4}$ in the first quadrant

For the following exercises, use the theorem of Pappus to determine the volume of the shape.
280. Rotating $y=m x$ around the x-axis between $x=0$ and $x=1$
281. Rotating $y=m x$ around the y-axis between $x=0$ and $x=1$
282. A general cone created by rotating a triangle with vertices $(0,0), \quad(a, 0)$, and $(0, b)$ around the y-axis. Does your answer agree with the volume of a cone?
283. A general cylinder created by rotating a rectangle with vertices $(0,0),(a, 0),(0, b)$, and (a, b) around the y-axis. Does your answer agree with the volume of a cylinder?
284. A sphere created by rotating a semicircle with radius a around the y-axis. Does your answer agree with the volume of a sphere?

For the following exercises, use a calculator to draw the region enclosed by the curve. Find the area M and the
centroid (\bar{x}, \bar{y}) for the given shapes. Use symmetry to help locate the center of mass whenever possible.
285. [T] Quarter-circle: $y=\sqrt{1-x^{2}}, \quad y=0, \quad$ and $x=0$
286. [T] Triangle: $y=x, y=2-x$, and $y=0$
287. [T] Lens: $y=x^{2}$ and $y=x$
288. [T] Ring: $y^{2}+x^{2}=1$ and $y^{2}+x^{2}=4$
289. [T] Half-ring: $y^{2}+x^{2}=1, y^{2}+x^{2}=4$, and $y=0$
290. Find the generalized center of mass in the sliver between $y=x^{a}$ and $y=x^{b}$ with $a>b$. Then, use the Pappus theorem to find the volume of the solid generated when revolving around the y-axis.
291. Find the generalized center of mass between $y=a^{2}-x^{2}, \quad x=0$, and $y=0$. Then, use the Pappus theorem to find the volume of the solid generated when revolving around the y-axis.
292. Find the generalized center of mass between $y=b \sin (a x), \quad x=0, \quad$ and $\quad x=\frac{\pi}{a}$. Then, use the Pappus theorem to find the volume of the solid generated when revolving around the y-axis.
293. Use the theorem of Pappus to find the volume of a torus (pictured here). Assume that a disk of radius a is positioned with the left end of the circle at $x=b$, $b>0$, and is rotated around the y-axis.

294. Find the center of mass (\bar{x}, \bar{y}) for a thin wire along the semicircle $y=\sqrt{1-x^{2}}$ with unit mass. (Hint: Use the theorem of Pappus.)

