
6.7 | Integrals, Exponential Functions, and Logarithms

Learning Objectives
6.7.1 Write the definition of the natural logarithm as an integral.

6.7.2 Recognize the derivative of the natural logarithm.

6.7.3 Integrate functions involving the natural logarithmic function.

6.7.4 Define the number e through an integral.

6.7.5 Recognize the derivative and integral of the exponential function.

6.7.6 Prove properties of logarithms and exponential functions using integrals.

6.7.7 Express general logarithmic and exponential functions in terms of natural logarithms and
exponentials.

We already examined exponential functions and logarithms in earlier chapters. However, we glossed over some key details
in the previous discussions. For example, we did not study how to treat exponential functions with exponents that are
irrational. The definition of the number e is another area where the previous development was somewhat incomplete. We
now have the tools to deal with these concepts in a more mathematically rigorous way, and we do so in this section.

For purposes of this section, assume we have not yet defined the natural logarithm, the number e, or any of the integration
and differentiation formulas associated with these functions. By the end of the section, we will have studied these concepts
in a mathematically rigorous way (and we will see they are consistent with the concepts we learned earlier).

We begin the section by defining the natural logarithm in terms of an integral. This definition forms the foundation for
the section. From this definition, we derive differentiation formulas, define the number e, and expand these concepts to

logarithms and exponential functions of any base.

The Natural Logarithm as an Integral
Recall the power rule for integrals:

∫ xndx = xn + 1

n + 1 + C, n ≠ −1.

Clearly, this does not work when n = −1, as it would force us to divide by zero. So, what do we do with ∫ 1
xdx? Recall

from the Fundamental Theorem of Calculus that ∫
1

x
1
t dt is an antiderivative of 1/x. Therefore, we can make the following

definition.

Definition

For x > 0, define the natural logarithm function by

(6.24)
ln x = ∫

1

x
1
t dt.

For x > 1, this is just the area under the curve y = 1/t from 1 to x. For x < 1, we have ∫
1

x
1
t dt = −∫

x

1
1
t dt, so in

this case it is the negative of the area under the curve from x to 1 (see the following figure).
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Figure 6.75 (a) When x > 1, the natural logarithm is the area under the

curve y = 1/t from 1 to x. (b) When x < 1, the natural logarithm is the

negative of the area under the curve from x to 1.

Notice that ln 1 = 0. Furthermore, the function y = 1/t > 0 for x > 0. Therefore, by the properties of integrals, it is clear

that ln x is increasing for x > 0.

Properties of the Natural Logarithm
Because of the way we defined the natural logarithm, the following differentiation formula falls out immediately as a result
of to the Fundamental Theorem of Calculus.

Theorem 6.15: Derivative of the Natural Logarithm

For x > 0, the derivative of the natural logarithm is given by

d
dxln x = 1

x .

Theorem 6.16: Corollary to the Derivative of the Natural Logarithm

The function ln x is differentiable; therefore, it is continuous.

A graph of ln x is shown in Figure 6.76. Notice that it is continuous throughout its domain of (0, ∞).
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6.35

Figure 6.76 The graph of f (x) = ln x shows that it is a

continuous function.

Example 6.35

Calculating Derivatives of Natural Logarithms

Calculate the following derivatives:

a. d
dxln⎛⎝5x3 − 2⎞⎠

b. d
dx
⎛
⎝ln(3x)⎞⎠2

Solution

We need to apply the chain rule in both cases.

a. d
dxln⎛⎝5x3 − 2⎞⎠ = 15x2

5x3 − 2

b. d
dx
⎛
⎝ln(3x)⎞⎠2 = 2⎛⎝ln(3x)⎞⎠ · 3

3x = 2⎛⎝ln(3x)⎞⎠
x

Calculate the following derivatives:

a. d
dxln⎛⎝2x2 + x⎞⎠

b. d
dx
⎛
⎝ln
⎛
⎝x3⎞⎠
⎞
⎠
2

Note that if we use the absolute value function and create a new function ln |x|, we can extend the domain of the natural

logarithm to include x < 0. Then ⎛
⎝d/(dx)⎞⎠ln |x| = 1/x. This gives rise to the familiar integration formula.

Theorem 6.17: Integral of (1/u) du

The natural logarithm is the antiderivative of the function f (u) = 1/u:
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∫ 1
udu = ln |u| + C.

Example 6.36

Calculating Integrals Involving Natural Logarithms

Calculate the integral ∫ x
x2 + 4

dx.

Solution

Using u -substitution, let u = x2 + 4. Then du = 2x dx and we have

∫ x
x2 + 4

dx = 1
2∫ 1

udu = 1
2ln |u| + C = 1

2ln |x2 + 4| + C = 1
2ln⎛⎝x2 + 4⎞⎠+ C.

Calculate the integral ∫ x2

x3 + 6
dx.

Although we have called our function a “logarithm,” we have not actually proved that any of the properties of logarithms
hold for this function. We do so here.

Theorem 6.18: Properties of the Natural Logarithm

If a, b > 0 and r is a rational number, then

i. ln 1 = 0

ii. ln(ab) = ln a + ln b

iii. ln⎛⎝ab
⎞
⎠ = ln a − ln b

iv. ln(ar) = r ln a

Proof

i. By definition, ln 1 = ∫
1

1
1
t dt = 0.

ii. We have

() ln(ab) = ∫
1

ab
1
t dt = ∫

1

a
1
t dt + ∫

a

ab
1
t dt.

Use u-substitution on the last integral in this expression. Let u = t/a. Then du = (1/a)dt. Furthermore, when

t = a, u = 1, and when t = ab, u = b. So we get

() ln(ab) = ∫
1

a
1
t dt + ∫

a

ab
1
t dt = ∫

1

a
1
t dt + ∫

a

ab
a
t · 1

adt = ∫
1

a
1
t dt + ∫

1

b
1
udu = ln a + ln b.
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6.37

iv. Note that

() d
dxln(xr) = rxr − 1

xr
= r

x.

Furthermore,

() d
dx(r ln x) = r

x.

Since the derivatives of these two functions are the same, by the Fundamental Theorem of Calculus, they must differ by a
constant. So we have

() ln(xr) = r ln x + C

for some constant C. Taking x = 1, we get

()
ln(1r) = r ln(1) + C

0 = r(0) + C
C = 0.

Thus ln(xr) = r ln x and the proof is complete. Note that we can extend this property to irrational values of r later in this

section.
Part iii. follows from parts ii. and iv. and the proof is left to you.

□

Example 6.37

Using Properties of Logarithms

Use properties of logarithms to simplify the following expression into a single logarithm:

ln 9 − 2 ln 3 + ln⎛⎝13
⎞
⎠.

Solution

We have

ln 9 − 2 ln 3 + ln⎛⎝13
⎞
⎠ = ln⎛⎝32⎞⎠− 2 ln 3 + ln⎛⎝3−1⎞⎠ = 2 ln 3 − 2 ln 3 − ln 3 = −ln 3.

Use properties of logarithms to simplify the following expression into a single logarithm:

ln 8 − ln 2 − ln⎛⎝14
⎞
⎠.

Defining the Number e
Now that we have the natural logarithm defined, we can use that function to define the number e.

Definition

The number e is defined to be the real number such that

ln e = 1.
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To put it another way, the area under the curve y = 1/t between t = 1 and t = e is 1 (Figure 6.77). The proof that such

a number exists and is unique is left to you. (Hint: Use the Intermediate Value Theorem to prove existence and the fact that
ln x is increasing to prove uniqueness.)

Figure 6.77 The area under the curve from 1 to e is equal

to one.

The number e can be shown to be irrational, although we won’t do so here (see the Student Project in Taylor and

Maclaurin Series (http://cnx.org/content/m53817/latest/) ). Its approximate value is given by

e ≈ 2.71828182846.

The Exponential Function
We now turn our attention to the function ex. Note that the natural logarithm is one-to-one and therefore has an inverse

function. For now, we denote this inverse function by exp x. Then,

exp(ln x) = x for x > 0 and ln(exp x) = x for all x.

The following figure shows the graphs of exp x and ln x.

Figure 6.78 The graphs of ln x and exp x.

We hypothesize that exp x = ex. For rational values of x, this is easy to show. If x is rational, then we have

ln(ex) = x ln e = x. Thus, when x is rational, ex = exp x. For irrational values of x, we simply define ex as the

inverse function of ln x.
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Definition

For any real number x, define y = ex to be the number for which

(6.25)ln y = ln(ex) = x.

Then we have ex = exp(x) for all x, and thus

(6.26)eln x = x for x > 0 and ln(ex) = x

for all x.

Properties of the Exponential Function
Since the exponential function was defined in terms of an inverse function, and not in terms of a power of e, we must

verify that the usual laws of exponents hold for the function ex.

Theorem 6.19: Properties of the Exponential Function

If p and q are any real numbers and r is a rational number, then

i. e p eq = e p + q

ii. e p
eq

= e p − q

iii. (e p)r = e pr

Proof

Note that if p and q are rational, the properties hold. However, if p or q are irrational, we must apply the inverse

function definition of ex and verify the properties. Only the first property is verified here; the other two are left to you. We

have

ln(e p eq) = ln(e p) + ln(eq) = p + q = ln⎛⎝e
p + q⎞
⎠.

Since ln x is one-to-one, then

e p eq = e p + q.

□

As with part iv. of the logarithm properties, we can extend property iii. to irrational values of r, and we do so by the end

of the section.

We also want to verify the differentiation formula for the function y = ex. To do this, we need to use implicit

differentiation. Let y = ex. Then

ln y = x
d
dxln y = d

dxx

1
y
dy
dx = 1

dy
dx = y.

Thus, we see
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d
dxe

x = ex

as desired, which leads immediately to the integration formula

∫ ex dx = ex + C.

We apply these formulas in the following examples.

Example 6.38

Using Properties of Exponential Functions

Evaluate the following derivatives:

a. d
dte

3t et
2

b. d
dxe

3x2

Solution

We apply the chain rule as necessary.

a. d
dte

3t et
2

= d
dte

3t + t2 = e3t + t2 (3 + 2t)

b. d
dxe

3x2
= e3x2

6x

Evaluate the following derivatives:

a. d
dx
⎛
⎝
⎜ex

2

e5x

⎞
⎠
⎟

b. d
dt
⎛
⎝e2t⎞⎠

3

Example 6.39

Using Properties of Exponential Functions

Evaluate the following integral: ∫ 2xe−x2
dx.

Solution

Using u -substitution, let u = −x2. Then du = −2x dx, and we have

∫ 2xe−x2
dx = −∫ eudu = −eu + C = −e−x2

+ C.
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6.39 Evaluate the following integral: ∫ 4
e3xdx.

General Logarithmic and Exponential Functions
We close this section by looking at exponential functions and logarithms with bases other than e. Exponential functions

are functions of the form f (x) = ax. Note that unless a = e, we still do not have a mathematically rigorous definition

of these functions for irrational exponents. Let’s rectify that here by defining the function f (x) = ax in terms of the

exponential function ex. We then examine logarithms with bases other than e as inverse functions of exponential

functions.

Definition

For any a > 0, and for any real number x, define y = ax as follows:

y = ax = ex ln a.

Now ax is defined rigorously for all values of x. This definition also allows us to generalize property iv. of logarithms and

property iii. of exponential functions to apply to both rational and irrational values of r. It is straightforward to show that

properties of exponents hold for general exponential functions defined in this way.

Let’s now apply this definition to calculate a differentiation formula for ax. We have

d
dxa

x = d
dxe

x ln a = ex ln a ln a = ax ln a.

The corresponding integration formula follows immediately.

Theorem 6.20: Derivatives and Integrals Involving General Exponential Functions

Let a > 0. Then,

d
dxa

x = ax ln a

and

∫ ax dx = 1
ln aa

x + C.

If a ≠ 1, then the function ax is one-to-one and has a well-defined inverse. Its inverse is denoted by loga x. Then,

y = loga x if and only if x = ay.

Note that general logarithm functions can be written in terms of the natural logarithm. Let y = loga x. Then, x = ay.
Taking the natural logarithm of both sides of this second equation, we get

ln x = ln(ay)
ln x = y ln a

y = ln x
ln a

log x = ln x
ln a.

Thus, we see that all logarithmic functions are constant multiples of one another. Next, we use this formula to find a
differentiation formula for a logarithm with base a. Again, let y = loga x. Then,
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6.40

dy
dx = d

dx
⎛
⎝loga x⎞⎠

= d
dx
⎛
⎝ln x
ln a
⎞
⎠

= ⎛⎝ 1
ln a
⎞
⎠ ddx(ln x)

= 1
ln a · 1

x

= 1
x ln a.

Theorem 6.21: Derivatives of General Logarithm Functions

Let a > 0. Then,

d
dxloga x = 1

x ln a.

Example 6.40

Calculating Derivatives of General Exponential and Logarithm Functions

Evaluate the following derivatives:

a. d
dt
⎛
⎝4t · 2t2⎞⎠

b. d
dxlog8

⎛
⎝7x2 + 4⎞⎠

Solution

We need to apply the chain rule as necessary.

a. d
dt
⎛
⎝4t · 2t2⎞⎠ = d

dt
⎛
⎝22t · 2t2⎞⎠ = d

dt
⎛
⎝22t + t2⎞⎠ = 22t + t2 ln(2)(2 + 2t)

b. d
dxlog8

⎛
⎝7x2 + 4⎞⎠ = 1

⎛
⎝7x2 + 4⎞⎠(ln 8)

(14x)

Evaluate the following derivatives:

a. d
dt 4t4

b. d
dxlog3

⎛
⎝ x2 + 1⎞⎠

Example 6.41

Integrating General Exponential Functions
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6.41

Evaluate the following integral: ∫ 3
23xdx.

Solution

Use u-substitution and let u = −3x. Then du = −3dx and we have

∫ 3
23xdx = ∫ 3 · 2−3xdx = −∫ 2udu = − 1

ln 22u + C = − 1
ln 22−3x + C.

Evaluate the following integral: ∫ x2 2x3
dx.
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