6.7 EXERCISES

For the following exercises, find the derivative $\frac{d y}{d x}$.
295. $y=\ln (2 x)$
296. $y=\ln (2 x+1)$
297. $y=\frac{1}{\ln x}$

For the following exercises, find the indefinite integral.
298. $\int \frac{d t}{3 t}$
299. $\int \frac{d x}{1+x}$

For the following exercises, find the derivative $d y / d x$. (You can use a calculator to plot the function and the derivative to confirm that it is correct.)
300. [T] $y=\frac{\ln (x)}{x}$
301. [T] $y=x \ln (x)$
302. [T] $y=\log _{10} x$
303. [T] $y=\ln (\sin x)$
304. [T] $y=\ln (\ln x)$
305. [T] $y=7 \ln (4 x)$
306. [T] $y=\ln \left((4 x)^{7}\right)$
307. [T] $y=\ln (\tan x)$
308. [T] $y=\ln (\tan (3 x))$
309. [T] $y=\ln \left(\cos ^{2} x\right)$

For the following exercises, find the definite or indefinite integral.
310. $\int_{0}^{1} \frac{d x}{3+x}$
311. $\int_{0}^{1} \frac{d t}{3+2 t}$
312. $\int_{0}^{2} \frac{x d x}{x^{2}+1}$
313. $\int_{0}^{2} \frac{x^{3} d x}{x^{2}+1}$
314. $\int_{2}^{e} \frac{d x}{x \ln x}$
315. $\int_{2}^{e} \frac{d x}{x(\ln x)^{2}}$
316. $\int \frac{\cos x d x}{\sin x}$
317. $\int_{0}^{\pi / 4} \tan x d x$
318. $\int \cot (3 x) d x$
319. $\int \frac{(\ln x)^{2} d x}{x}$

For the following exercises, compute $d y / d x$ by differentiating $\ln y$.
320. $y=\sqrt{x^{2}+1}$
321. $y=\sqrt{x^{2}+1} \sqrt{x^{2}-1}$
322. $y=e^{\sin x}$
323. $y=x^{-1 / x}$
324. $y=e^{(e x)}$
325. $y=x^{e}$
326. $y=x^{(e x)}$
327. $y=\sqrt{x} \sqrt[3]{x} \sqrt[6]{x}$
328. $y=x^{-1 / \ln x}$
329. $y=e^{-\ln x}$

For the following exercises, evaluate by any method.
330. $\int_{5}^{10} \frac{d t}{t}-\int_{5 x}^{10 x} \frac{d t}{t}$
331. $\int_{1}^{e^{\pi}} \frac{d x}{x}+\int_{-2}^{-1} \frac{d x}{x}$
332. $\frac{d}{d x} \int_{x}^{1} \frac{d t}{t}$
333. $\frac{d}{d x} \int_{x}^{x^{2}} \frac{d t}{t}$
334. $\frac{d}{d x} \ln (\sec x+\tan x)$

For the following exercises, use the function $\ln x$. If you are unable to find intersection points analytically, use a calculator.
335. Find the area of the region enclosed by $x=1$ and $y=5$ above $y=\ln x$.
336. [T] Find the arc length of $\ln x$ from $x=1$ to $x=2$.
337. Find the area between $\ln x$ and the x-axis from $x=1$ to $x=2$.
338. Find the volume of the shape created when rotating this curve from $x=1$ to $x=2$ around the x-axis, as pictured here.

339. [T] Find the surface area of the shape created when rotating the curve in the previous exercise from $x=1$ to $x=2$ around the x-axis.

If you are unable to find intersection points analytically in the following exercises, use a calculator.
340. Find the area of the hyperbolic quarter-circle enclosed by $x=2$ and $y=2$ above $y=1 / x$.
341. [T] Find the arc length of $y=1 / x$ from $x=1$ to $x=4$.
342. Find the area under $y=1 / x$ and above the x-axis from $x=1$ to $x=4$.

For the following exercises, verify the derivatives and antiderivatives.
343. $\frac{d}{d x} \ln \left(x+\sqrt{x^{2}+1}\right)=\frac{1}{\sqrt{1+x^{2}}}$
344. $\frac{d}{d x} \ln \left(\frac{x-a}{x+a}\right)=\frac{2 a}{\left(x^{2}-a^{2}\right)}$
345. $\frac{d}{d x} \ln \left(\frac{1+\sqrt{1-x^{2}}}{x}\right)=-\frac{1}{x \sqrt{1-x^{2}}}$
346. $\frac{d}{d x} \ln \left(x+\sqrt{x^{2}-a^{2}}\right)=\frac{1}{\sqrt{x^{2}-a^{2}}}$
347. $\int \frac{d x}{x \ln (x) \ln (\ln x)}=\ln (\ln (\ln x))+C$

