6.7 EXERCISES

For the following exercises, find the derivative $\frac{dy}{dx}$.

295. $y = \ln(2x)$

296. $y = \ln(2x + 1)$

$$297. \quad y = \frac{1}{\ln x}$$

For the following exercises, find the indefinite integral.

$$299. \quad \int \frac{dx}{1+x}$$

 $\int dt$

298.

For the following exercises, find the derivative dy/dx. (You can use a calculator to plot the function and the derivative to confirm that it is correct.)

300. **[T]**
$$y = \frac{\ln(x)}{x}$$

301. **[T]** $y = x \ln(x)$
302. **[T]** $y = \log_{10} x$
303. **[T]** $y = \ln(\sin x)$
304. **[T]** $y = \ln(\ln x)$
305. **[T]** $y = 7 \ln(4x)$
306. **[T]** $y = \ln((4x)^7)$
307. **[T]** $y = \ln(\tan x)$
308. **[T]** $y = \ln(\tan(3x))$
309. **[T]** $y = \ln(\cos^2 x)$
For the following exercises, find the definite or indefinite integral.

integral.

310.
$$\int_0^1 \frac{dx}{3+x}$$

311. $\int_0^1 \frac{dt}{3+2t}$

313.
$$\int_{0}^{2} \frac{x^{3} dx}{x^{2} + 1}$$

314.
$$\int_{2}^{e} \frac{dx}{x \ln x}$$

312. $\int_{0}^{2} \frac{x \, dx}{x^2 + 1}$

$$315. \quad \int_{2}^{e} \frac{dx}{x \left(\ln x\right)^2}$$

316.
$$\int \frac{\cos x \, dx}{\sin x}$$

$$317. \quad \int_0^{\pi/4} \tan x \, dx$$

318.
$$\int \cot(3x) dx$$

319.
$$\int \frac{(\ln x)^2 dx}{x}$$

For the following exercises, compute dy/dx by differentiating ln *y*.

320.
$$y = \sqrt{x^2 + 1}$$

321. $y = \sqrt{x^2 + 1}\sqrt{x^2 - 1}$
322. $y = e^{\sin x}$
323. $y = x^{-1/x}$
324. $y = e^{(ex)}$
325. $y = x^e$
326. $y = x^{(ex)}$
327. $y = \sqrt{x}\sqrt[3]{x}\sqrt[6]{x}$
328. $y = x^{-1/\ln x}$
329. $y = e^{-\ln x}$

For the following exercises, evaluate by any method.

330.
$$\int_{5}^{10} \frac{dt}{t} - \int_{5x}^{10x} \frac{dt}{t}$$

331.
$$\int_{1}^{e^{\pi}} \frac{dx}{x} + \int_{-2}^{-1} \frac{dx}{x}$$

332.
$$\frac{d}{dx} \int_{x}^{1} \frac{dt}{t}$$

333.
$$\frac{d}{dx} \int_{x}^{x^2} \frac{dt}{t}$$

334.
$$\frac{d}{dx} \ln(\sec x + \tan x)$$

For the following exercises, use the function $\ln x$. If you are unable to find intersection points analytically, use a calculator.

335. Find the area of the region enclosed by x = 1 and y = 5 above $y = \ln x$.

336. **[T]** Find the arc length of $\ln x$ from x = 1 to x = 2.

337. Find the area between $\ln x$ and the *x*-axis from x = 1 to x = 2.

338. Find the volume of the shape created when rotating this curve from x = 1 to x = 2 around the *x*-axis, as pictured here.

339. **[T]** Find the surface area of the shape created when rotating the curve in the previous exercise from x = 1 to x = 2 around the *x*-axis.

If you are unable to find intersection points analytically in the following exercises, use a calculator.

340. Find the area of the hyperbolic quarter-circle enclosed by x = 2 and y = 2 above y = 1/x.

341. **[T]** Find the arc length of y = 1/x from x = 1 to x = 4.

342. Find the area under y = 1/x and above the *x*-axis from x = 1 to x = 4.

For the following exercises, verify the derivatives and antiderivatives.

343.
$$\frac{d}{dx}\ln(x+\sqrt{x^2+1}) = \frac{1}{\sqrt{1+x^2}}$$

344.
$$\frac{d}{dx}\ln\left(\frac{x-a}{x+a}\right) = \frac{2a}{\left(x^2 - a^2\right)}$$

345.
$$\frac{d}{dx} \ln \left(\frac{1 + \sqrt{1 - x^2}}{x} \right) = -\frac{1}{x\sqrt{1 - x^2}}$$

346.
$$\frac{d}{dx}\ln(x+\sqrt{x^2-a^2}) = \frac{1}{\sqrt{x^2-a^2}}$$

347.
$$\int \frac{dx}{x \ln(x) \ln(\ln x)} = \ln(\ln(\ln x)) + C$$