6.9 EXERCISES

377. **[T]** Find expressions for $\cosh x + \sinh x$ and $\cosh x - \sinh x$. Use a calculator to graph these functions and ensure your expression is correct.

378. From the definitions of cosh(x) and sinh(x), find their antiderivatives.

379. Show that $\cosh(x)$ and $\sinh(x)$ satisfy y'' = y.

380. Use the quotient rule to verify that $tanh(x)' = \operatorname{sech}^2(x)$.

381. Derive $\cosh^2(x) + \sinh^2(x) = \cosh(2x)$ from the definition.

382. Take the derivative of the previous expression to find an expression for $\sinh(2x)$.

383. Prove $\sinh(x + y) = \sinh(x)\cosh(y) + \cosh(x)\sinh(y)$ by

changing the expression to exponentials.

384. Take the derivative of the previous expression to find an expression for cosh(x + y).

For the following exercises, find the derivatives of the given functions and graph along with the function to ensure your answer is correct.

385. **[T]**
$$\cosh(3x+1)$$

386. **[T]** $\sinh(x^2)$

387. **[T]** $\frac{1}{\cosh(x)}$

388. **[T]** $\sinh(\ln(x))$

- 389. **[T]** $\cosh^2(x) + \sinh^2(x)$
- 390. **[T]** $\cosh^2(x) \sinh^2(x)$
- 391. **[T]** $\tanh(\sqrt{x^2 + 1})$

392. **[T]** $\frac{1 + \tanh(x)}{1 - \tanh(x)}$

393. **[T]** $\sinh^6(x)$

394. **[T]** $\ln(\operatorname{sech}(x) + \tanh(x))$

For the following exercises, find the antiderivatives for the given functions.

395.
$$\cosh(2x+1)$$

396.
$$tanh(3x + 2)$$

397.
$$x \cosh(x^2)$$

398.
$$3x^3 \tanh(x^4)$$

$$399. \quad \cosh^2(x)\sinh(x)$$

400.
$$\tanh^2(x)\operatorname{sech}^2(x)$$

401.
$$\frac{\sinh(x)}{1 + \cosh(x)}$$

402.
$$\operatorname{coth}(x)$$

403.
$$\cosh(x) + \sinh(x)$$

404.
$$(\cosh(x) + \sinh(x))^n$$

For the following exercises, find the derivatives for the functions.

405.
$$\tanh^{-1}(4x)$$

406. $\sinh^{-1}(x^2)$
407. $\sinh^{-1}(\cosh(x))$
408. $\cosh^{-1}(x^3)$
409. $\tanh^{-1}(\cos(x))$
410. $e^{\sinh^{-1}(x)}$
411. $\ln(\tanh^{-1}(x))$

For the following exercises, find the antiderivatives for the functions.

412.
$$\int \frac{dx}{4-x^2}$$

414.
$$\int \frac{dx}{\sqrt{x^2 + 1}}$$

$$415. \quad \int \frac{x \, dx}{\sqrt{x^2 + 1}}$$

416.
$$\int -\frac{dx}{x\sqrt{1-x^2}}$$

$$417. \quad \int \frac{e^x}{\sqrt{e^{2x} - 1}}$$

$$418. \quad \int -\frac{2x}{x^4 - 1}$$

For the following exercises, use the fact that a falling body with friction equal to velocity squared obeys the equation $dv/dt = g - v^2$.

419. Show that $v(t) = \sqrt{g} \tanh((\sqrt{g})t)$ satisfies this equation.

420. Derive the previous expression for v(t) by integrating $\frac{dv}{q-v^2} = dt$.

421. **[T]** Estimate how far a body has fallen in 12 seconds by finding the area underneath the curve of v(t).

For the following exercises, use this scenario: A cable hanging under its own weight has a slope S = dy/dx that satisfies $dS/dx = c\sqrt{1 + S^2}$. The constant *c* is the ratio of cable density to tension.

422. Show that $S = \sinh(cx)$ satisfies this equation.

423. Integrate $dy/dx = \sinh(cx)$ to find the cable height y(x) if y(0) = 1/c.

424. Sketch the cable and determine how far down it sags at x = 0.

For the following exercises, solve each problem.

425. **[T]** A chain hangs from two posts 2 m apart to form a catenary described by the equation $y = 2 \cosh(x/2) - 1$. Find the slope of the catenary at the left fence post.

426. **[T]** A chain hangs from two posts four meters apart to form a catenary described by the equation $y = 4 \cosh(x/4) - 3$. Find the total length of the catenary (arc length).

427. **[T]** A high-voltage power line is a catenary described by $y = 10 \cosh(x/10)$. Find the ratio of the area under the catenary to its arc length. What do you notice?

428. A telephone line is a catenary described by $y = a \cosh(x/a)$. Find the ratio of the area under the catenary to its arc length. Does this confirm your answer for the previous question?

429. Prove the formula for the derivative of $y = \sinh^{-1}(x)$ by differentiating $x = \sinh(y)$. (*Hint:* Use hyperbolic trigonometric identities.)

430. Prove the formula for the derivative of $y = \cosh^{-1}(x)$ by differentiating $x = \cosh(y)$. (*Hint:* Use hyperbolic trigonometric identities.)

431. Prove the formula for the derivative of $y = \operatorname{sech}^{-1}(x)$ by differentiating $x = \operatorname{sech}(y)$. (*Hint*: Use hyperbolic trigonometric identities.)

432. Prove that $(\cosh(x) + \sinh(x))^n = \cosh(nx) + \sinh(nx)$.

433. Prove the expression for $\sinh^{-1}(x)$. Multiply $x = \sinh(y) = (1/2)(e^y - e^{-y})$ by $2e^y$ and solve for *y*. Does your expression match the textbook?

434. Prove the expression for $\cosh^{-1}(x)$. Multiply $x = \cosh(y) = (1/2)(e^y - e^{-y})$ by $2e^y$ and solve for *y*. Does your expression match the textbook?