6.9 EXERCISES

377. [T] Find expressions for $\cosh x+\sinh x$ and $\cosh x-\sinh x$. Use a calculator to graph these functions and ensure your expression is correct.
378. From the definitions of $\cosh (x)$ and $\sinh (x)$, find their antiderivatives.
379. Show that $\cosh (x)$ and $\sinh (x)$ satisfy $y^{\prime \prime}=y$.
380. Use the quotient rule to verify that $\tanh (x)^{\prime}=\operatorname{sech}^{2}(x)$.
381. Derive $\cosh ^{2}(x)+\sinh ^{2}(x)=\cosh (2 x)$ from the definition.
382. Take the derivative of the previous expression to find an expression for $\sinh (2 x)$.
383.

Prove
$\sinh (x+y)=\sinh (x) \cosh (y)+\cosh (x) \sinh (y) \quad$ by changing the expression to exponentials.
384. Take the derivative of the previous expression to find an expression for $\cosh (x+y)$.

For the following exercises, find the derivatives of the given functions and graph along with the function to ensure your answer is correct.
385. [T] $\cosh (3 x+1)$
386. [T] $\sinh \left(x^{2}\right)$
387. [T] $\frac{1}{\cosh (x)}$
388. [T] $\sinh (\ln (x))$
389. [T] $\cosh ^{2}(x)+\sinh ^{2}(x)$
390. [T] $\cosh ^{2}(x)-\sinh ^{2}(x)$
391. [T] $\tanh \left(\sqrt{x^{2}+1}\right)$
392. [T] $\frac{1+\tanh (x)}{1-\tanh (x)}$
393. $[\mathrm{T}] \sinh ^{6}(x)$
394. [T] $\ln (\operatorname{sech}(x)+\tanh (x))$

For the following exercises, find the antiderivatives for the given functions.
395. $\cosh (2 x+1)$
396. $\tanh (3 x+2)$
397. $x \cosh \left(x^{2}\right)$
398. $3 x^{3} \tanh \left(x^{4}\right)$
399. $\cosh ^{2}(x) \sinh (x)$
400. $\tanh ^{2}(x) \operatorname{sech}^{2}(x)$
401. $\frac{\sinh (x)}{1+\cosh (x)}$
402. $\operatorname{coth}(x)$
403. $\cosh (x)+\sinh (x)$
404. $(\cosh (x)+\sinh (x))^{n}$

For the following exercises, find the derivatives for the functions.
405. $\tanh ^{-1}(4 x)$
406. $\sinh ^{-1}\left(x^{2}\right)$
407. $\sinh ^{-1}(\cosh (x))$
408. $\cosh ^{-1}\left(x^{3}\right)$
409. $\tanh ^{-1}(\cos (x))$
410. $e^{\sinh ^{-1}(x)}$
411. $\ln \left(\tanh ^{-1}(x)\right)$

For the following exercises, find the antiderivatives for the functions.
412. $\int \frac{d x}{4-x^{2}}$
413. $\int \frac{d x}{a^{2}-x^{2}}$
414. $\int \frac{d x}{\sqrt{x^{2}+1}}$
415. $\int \frac{x d x}{\sqrt{x^{2}+1}}$
416. $\int-\frac{d x}{x \sqrt{1-x^{2}}}$
417. $\int \frac{e^{x}}{\sqrt{e^{2 x}-1}}$
418. $\int-\frac{2 x}{x^{4}-1}$

For the following exercises, use the fact that a falling body with friction equal to velocity squared obeys the equation $d v / d t=g-v^{2}$.
419. Show that $v(t)=\sqrt{g} \tanh ((\sqrt{g}) t)$ satisfies this equation.
420. Derive the previous expression for $v(t)$ by integrating $\frac{d v}{g-v^{2}}=d t$.
421. [T] Estimate how far a body has fallen in 12 seconds by finding the area underneath the curve of $v(t)$.

For the following exercises, use this scenario: A cable hanging under its own weight has a slope $S=d y / d x$ that satisfies $d S / d x=c \sqrt{1+S^{2}}$. The constant c is the ratio of cable density to tension.
422. Show that $S=\sinh (c x)$ satisfies this equation.
423. Integrate $d y / d x=\sinh (c x)$ to find the cable height
$y(x)$ if $y(0)=1 / c$.
424. Sketch the cable and determine how far down it sags at $x=0$.

For the following exercises, solve each problem.
425. [T] A chain hangs from two posts 2 m apart to form a catenary described by the equation $y=2 \cosh (x / 2)-1$. Find the slope of the catenary at the left fence post.
426. [T] A chain hangs from two posts four meters apart to form a catenary described by the equation $y=4 \cosh (x / 4)-3$. Find the total length of the catenary (arc length).
427. [T] A high-voltage power line is a catenary described by $y=10 \cosh (x / 10)$. Find the ratio of the area under the catenary to its arc length. What do you notice?
428. A telephone line is a catenary described by $y=a \cosh (x / a)$. Find the ratio of the area under the catenary to its arc length. Does this confirm your answer for the previous question?
429. Prove the formula for the derivative of $y=\sinh ^{-1}(x)$ by differentiating $x=\sinh (y)$. (Hint: Use hyperbolic trigonometric identities.)
430. Prove the formula for the derivative of $y=\cosh ^{-1}(x)$ by differentiating $x=\cosh (y)$. (Hint: Use hyperbolic trigonometric identities.)
431. Prove the formula for the derivative of $y=\operatorname{sech}^{-1}(x)$ by differentiating $x=\operatorname{sech}(y)$. (Hint: Use hyperbolic trigonometric identities.)
432. Prove that $(\cosh (x)+\sinh (x))^{n}=\cosh (n x)+\sinh (n x)$.
433. Prove the expression for $\sinh ^{-1}(x)$. Multiply $x=\sinh (y)=(1 / 2)\left(e^{y}-e^{-y}\right)$ by $2 e^{y}$ and solve for y. Does your expression match the textbook?
434. Prove the expression for $\cosh ^{-1}(x)$. Multiply $x=\cosh (y)=(1 / 2)\left(e^{y}-e^{-y}\right)$ by $2 e^{y}$ and solve for y. Does your expression match the textbook?

