
5.2 EXERCISES
In the following exercises, express the limits as integrals.

60. limn → ∞ ∑
i = 1

n
⎛
⎝xi*

⎞
⎠Δx over [1, 3]

61. limn → ∞ ∑
i = 1

n
⎛
⎝5⎛⎝xi*

⎞
⎠2 − 3⎛⎝xi*

⎞
⎠
3⎞⎠Δx over [0, 2]

62. limn → ∞ ∑
i = 1

n
sin2 ⎛⎝2πxi*

⎞
⎠Δx over [0, 1]

63. limn → ∞ ∑
i = 1

n
cos2 ⎛⎝2πxi*

⎞
⎠Δx over [0, 1]

In the following exercises, given Ln or Rn as indicated,
express their limits as n → ∞ as definite integrals,

identifying the correct intervals.

64. Ln = 1
n ∑
i = 1

n
i − 1
n

65. Rn = 1
n ∑
i = 1

n
i
n

66. Ln = 2
n ∑
i = 1

n ⎛
⎝1 + 2i − 1

n
⎞
⎠

67. Rn = 3
n ∑
i = 1

n ⎛
⎝3 + 3 in

⎞
⎠

68. Ln = 2π
n ∑

i = 1

n
2πi − 1

n cos⎛⎝2πi − 1
n
⎞
⎠

69. Rn = 1
n ∑
i = 1

n ⎛
⎝1 + i

n
⎞
⎠log⎛⎝⎛⎝1 + i

n
⎞
⎠
2⎞
⎠

In the following exercises, evaluate the integrals of the
functions graphed using the formulas for areas of triangles
and circles, and subtracting the areas below the x-axis.

70.

71.

72.

73.
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74.

75.

In the following exercises, evaluate the integral using area
formulas.

76. ∫
0

3
(3 − x)dx

77. ∫
2

3
(3 − x)dx

78. ∫
−3

3
(3 − |x|)dx

79. ∫
0

6
(3 − |x − 3|)dx

80. ∫
−2

2
4 − x2dx

81. ∫
1

5
4 − (x − 3)2dx

82. ∫
0

12
36 − (x − 6)2dx

83. ∫
−2

3
(3 − |x|)dx

In the following exercises, use averages of values at the left
(L) and right (R) endpoints to compute the integrals of the
piecewise linear functions with graphs that pass through the
given list of points over the indicated intervals.

84. {(0, 0), (2, 1), (4, 3), (5, 0), (6, 0), (8, 3)} over

[0, 8]

85. {(0, 2), (1, 0), (3, 5), (5, 5), (6, 2), (8, 0)} over

[0, 8]

86. {(−4, −4), (−2, 0), (0, −2), (3, 3), (4, 3)} over

[−4, 4]

87. {(−4, 0), (−2, 2), (0, 0), (1, 2), (3, 2), (4, 0)}
over [−4, 4]

Suppose that ∫
0

4
f (x)dx = 5 and ∫

0

2
f (x)dx = −3, and

∫
0

4
g(x)dx = −1 and ∫

0

2
g(x)dx = 2. In the following

exercises, compute the integrals.

88. ∫
0

4
⎛
⎝ f (x) + g(x)⎞⎠dx

89. ∫
2

4
⎛
⎝ f (x) + g(x)⎞⎠dx

90. ∫
0

2
⎛
⎝ f (x) − g(x)⎞⎠dx

91. ∫
2

4
⎛
⎝ f (x) − g(x)⎞⎠dx

92. ∫
0

2
⎛
⎝3 f (x) − 4g(x)⎞⎠dx

93. ∫
2

4
⎛
⎝4 f (x) − 3g(x)⎞⎠dx

In the following exercises, use the identity

∫
−A

A
f (x)dx = ∫

−A

0
f (x)dx + ∫

0

A
f (x)dx to compute the

integrals.

94. ⌠⌡−π

π
sin t

1 + t2
dt (Hint: sin(−t) = −sin(t))
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95. ∫
− π

π t
1 + cos tdt

In the following exercises, find the net signed area between
f ⎛⎝x⎞⎠ and the x-axis.

96. ∫
1

3
(2 − x)dx (Hint: Look at the graph of f.)

97. ∫
2

4
(x − 3)3dx (Hint: Look at the graph of f.)

In the following exercises, given that

∫
0

1
xdx = 1

2, ∫
0

1
x2dx = 1

3, and ∫
0

1
x3dx = 1

4,

compute the integrals.

98. ∫
0

1⎛
⎝1 + x + x2 + x3⎞⎠dx

99. ∫
0

1⎛
⎝1 − x + x2 − x3⎞⎠dx

100. ∫
0

1
(1 − x)2dx

101. ∫
0

1
(1 − 2x)3dx

102. ⌠⌡0

1⎛
⎝6x − 4

3x
2⎞⎠dx

103. ∫
0

1⎛
⎝7 − 5x3⎞⎠dx

In the following exercises, use the comparison
theorem.

104. Show that ∫
0

3⎛
⎝x2 − 6x + 9⎞⎠dx ≥ 0.

105. Show that ∫
−2

3
(x − 3)(x + 2)dx ≤ 0.

106. Show that ∫
0

1
1 + x3dx ≤ ∫

0

1
1 + x2dx.

107. Show that ∫
1

2
1 + xdx ≤ ∫

1

2
1 + x2dx.

108. Show that ∫
0

π/2
sin tdt ≥ π

4. (Hint: sin t ≥ 2t
π over

⎡
⎣0, π2
⎤
⎦)

109. Show that ∫
−π/4

π/4
cos tdt ≥ π 2/4.

In the following exercises, find the average value fave of f
between a and b, and find a point c, where f (c) = fave.

110. f (x) = x2, a = −1, b = 1

111. f (x) = x5, a = −1, b = 1

112. f (x) = 4 − x2, a = 0, b = 2

113. f (x) = (3 − |x|), a = −3, b = 3

114. f (x) = sinx, a = 0, b = 2π

115. f (x) = cosx, a = 0, b = 2π

In the following exercises, approximate the average value
using Riemann sums L100 and R100. How does your answer
compare with the exact given answer?

116. [T] y = ln(x) over the interval [1, 4]; the exact

solution is ln(256)
3 − 1.

117. [T] y = ex/2 over the interval [0, 1]; the exact

solution is 2( e − 1).

118. [T] y = tanx over the interval
⎡
⎣0, π4
⎤
⎦; the exact

solution is 2ln(2)
π .

119. [T] y = x + 1
4 − x2

over the interval [−1, 1]; the

exact solution is π
6.

In the following exercises, compute the average value using
the left Riemann sums LN for N = 1, 10, 100. How does

the accuracy compare with the given exact value?

120. [T] y = x2 − 4 over the interval [0, 2]; the exact

solution is −8
3.
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121. [T] y = xex
2

over the interval [0, 2]; the exact

solution is 1
4
⎛
⎝e4 − 1⎞⎠.

122. [T] y = ⎛⎝12
⎞
⎠
x

over the interval [0, 4]; the exact

solution is 15
64ln(2).

123. [T] y = xsin⎛⎝x2⎞⎠ over the interval [−π, 0]; the

exact solution is
cos⎛⎝π2⎞⎠− 1

2π .

124. Suppose that A = ∫
0

2π
sin2 tdt and

B = ∫
0

2π
cos2 tdt. Show that A + B = 2π and A = B.

125. Suppose that A = ∫
−π/4

π/4
sec2 tdt = π and

B = ∫
−π/4

π/4
tan2 tdt. Show that A − B = π

2.

126. Show that the average value of sin2 t over [0, 2π]
is equal to 1/2 Without further calculation, determine

whether the average value of sin2 t over [0, π] is also

equal to 1/2.

127. Show that the average value of cos2 t over [0, 2π]
is equal to 1/2. Without further calculation, determine

whether the average value of cos2 (t) over [0, π] is also

equal to 1/2.

128. Explain why the graphs of a quadratic function
(parabola) p(x) and a linear function ℓ(x) can intersect

in at most two points. Suppose that p(a) = ℓ(a) and

p(b) = ℓ(b), and that ∫
a

b
p(t)dt > ∫

a

b
ℓ(t)dt. Explain

why ∫
c

d
p(t) > ∫

c

d
ℓ(t)dt whenever a ≤ c < d ≤ b.

129. Suppose that parabola p(x) = ax2 + bx + c opens

downward (a < 0) and has a vertex of y = −b
2a > 0. For

which interval [A, B] is ∫
A

B⎛
⎝ax2 + bx + c⎞⎠dx as large as

possible?

130. Suppose ⎡
⎣a, b⎤⎦ can be subdivided into subintervals

a = a0 < a1 < a2 < ⋯ < aN = b such that either

f ≥ 0 over [ai − 1, ai] or f ≤ 0 over [ai − 1, ai]. Set

Ai = ∫
ai − 1

ai
f (t)dt.

a. Explain why ∫
a

b
f (t)dt = A1 + A2 + ⋯ + AN.

b. Then, explain why |∫a

b
f (t)dt| ≤ ∫

a

b
| f (t)|dt.

131. Suppose f and g are continuous functions such that

∫
c

d
f (t)dt ≤ ∫

c

d
g(t)dt for every subinterval ⎡

⎣c, d⎤⎦ of

⎡
⎣a, b⎤⎦. Explain why f (x) ≤ g(x) for all values of x.

132. Suppose the average value of f over ⎡
⎣a, b⎤⎦ is 1 and

the average value of f over ⎡
⎣b, c⎤⎦ is 1 where a < c < b.

Show that the average value of f over [a, c] is also 1.

133. Suppose that ⎡
⎣a, b⎤⎦ can be partitioned. taking

a = a0 < a1 < ⋯ < aN = b such that the average value

of f over each subinterval [ai − 1, ai] = 1 is equal to 1 for

each i = 1,…, N. Explain why the average value of f over
⎡
⎣a, b⎤⎦ is also equal to 1.

134. Suppose that for each i such that 1 ≤ i ≤ N one has

∫
i − 1

i
f (t)dt = i. Show that ∫

0

N
f (t)dt = N(N + 1)

2 .

135. Suppose that for each i such that 1 ≤ i ≤ N one

has ∫
i − 1

i
f (t)dt = i2. Show that

∫
0

N
f (t)dt = N(N + 1)(2N + 1)

6 .

136. [T] Compute the left and right Riemann sums L10

and R10 and their average
L10 + R10

2 for f (t) = t2 over

[0, 1]. Given that ∫
0

1
t2dt = 0.33

–
, to how many

decimal places is
L10 + R10

2 accurate?
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137. [T] Compute the left and right Riemann sums, L10

and R10, and their average
L10 + R10

2 for f (t) = ⎛⎝4 − t2⎞⎠

over [1, 2]. Given that ∫
1

2⎛
⎝4 − t2⎞⎠dt = 1.66

–
, to how

many decimal places is
L10 + R10

2 accurate?

138. If ∫
1

5
1 + t4dt = 41.7133..., what is

∫
1

5
1 + u4du?

139. Estimate ∫
0

1
tdt using the left and right endpoint

sums, each with a single rectangle. How does the average
of these left and right endpoint sums compare with the

actual value ∫
0

1
tdt?

140. Estimate ∫
0

1
tdt by comparison with the area of a

single rectangle with height equal to the value of t at the

midpoint t = 1
2. How does this midpoint estimate compare

with the actual value ∫
0

1
tdt?

141. From the graph of sin(2πx) shown:

a. Explain why ∫
0

1
sin(2πt)dt = 0.

b. Explain why, in general, ∫
a

a + 1
sin(2πt)dt = 0 for

any value of a.

142. If f is 1-periodic ⎛
⎝ f (t + 1) = f (t)⎞⎠, odd, and

integrable over [0, 1], is it always true that

∫
0

1
f (t)dt = 0?

143. If f is 1-periodic and ∫
0

1
f (t)dt = A, is it

necessarily true that ∫
a

1 + a
f (t)dt = A for all A?
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