
5.7 | Integrals Resulting in Inverse Trigonometric

Functions

Learning Objectives
5.7.1 Integrate functions resulting in inverse trigonometric functions

In this section we focus on integrals that result in inverse trigonometric functions. We have worked with these functions
before. Recall from Functions and Graphs that trigonometric functions are not one-to-one unless the domains are
restricted. When working with inverses of trigonometric functions, we always need to be careful to take these restrictions
into account. Also in Derivatives, we developed formulas for derivatives of inverse trigonometric functions. The formulas
developed there give rise directly to integration formulas involving inverse trigonometric functions.

Integrals that Result in Inverse Sine Functions
Let us begin this last section of the chapter with the three formulas. Along with these formulas, we use substitution to
evaluate the integrals. We prove the formula for the inverse sine integral.

Rule: Integration Formulas Resulting in Inverse Trigonometric Functions

The following integration formulas yield inverse trigonometric functions:

1.

(5.23)⌠
⌡

du
a2 − u2

= sin−1 u
|a| + C

2.

(5.24)⌠
⌡

du
a2 + u2 = 1

a tan−1 u
a + C

3.

(5.25)⌠
⌡

du
u u2 − a2

= 1
|a| sec−1 u

|a| + C

Proof

Let y = sin−1 x
a. Then asiny = x. Now let’s use implicit differentiation. We obtain

d
dx

⎛
⎝asiny⎞⎠ = d

dx (x)

acosy dydx = 1

dy
dx = 1

acosy.

For −π
2 ≤ y ≤ π

2, cosy ≥ 0. Thus, applying the Pythagorean identity sin2 y + cos2 y = 1, we have

cosy = 1 – sin2 y. This gives
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5.40

1
acosy = 1

a 1 − sin2 y

= 1
a2 − a2 sin2 y

= 1
a2 − x2

.

Then for −a ≤ x ≤ a, and generalizing to u, we have

⌠
⌡

1
a2 − u2

du = sin−1⎛⎝ua
⎞
⎠+ C.

□

Example 5.49

Evaluating a Definite Integral Using Inverse Trigonometric Functions

Evaluate the definite integral ⌠⌡0

1
2

dx
1 − x2

.

Solution

We can go directly to the formula for the antiderivative in the rule on integration formulas resulting in inverse
trigonometric functions, and then evaluate the definite integral. We have

⌠
⌡0

1
2

dx
1 − x2

= sin−1 x|0
1
2

= sin−1 1
2 − sin−1 0

= π
6 − 0

= π
6.

Find the antiderivative of ⌠⌡
dx

1 − 16x2
.

Example 5.50

Finding an Antiderivative Involving an Inverse Trigonometric Function

Evaluate the integral ⌠⌡
dx

4 − 9x2
.
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Solution

Substitute u = 3x. Then du = 3dx and we have

⌠
⌡

dx
4 − 9x2

= 1
3
⌠
⌡

du
4 − u2

.

Applying the formula with a = 2, we obtain

⌠
⌡

dx
4 − 9x2

= 1
3
⌠
⌡

du
4 − u2

= 1
3sin−1 ⎛⎝u2

⎞
⎠+ C

= 1
3sin−1 ⎛⎝3x2

⎞
⎠+ C.

Find the indefinite integral using an inverse trigonometric function and substitution for ⌠⌡
dx

9 − x2
.

Example 5.51

Evaluating a Definite Integral

Evaluate the definite integral ⌠⌡0

3/2
du

1 − u2
.

Solution

The format of the problem matches the inverse sine formula. Thus,

⌠
⌡0

3/2
du

1 − u2
= sin−1u|0

3/2

= ⎡⎣sin−1 ⎛⎝ 3
2
⎞
⎠
⎤
⎦− ⎡⎣sin−1 (0)⎤⎦

= π
3.

Integrals Resulting in Other Inverse Trigonometric Functions
There are six inverse trigonometric functions. However, only three integration formulas are noted in the rule on integration
formulas resulting in inverse trigonometric functions because the remaining three are negative versions of the ones we use.
The only difference is whether the integrand is positive or negative. Rather than memorizing three more formulas, if the
integrand is negative, simply factor out −1 and evaluate the integral using one of the formulas already provided. To close
this section, we examine one more formula: the integral resulting in the inverse tangent function.
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5.43

Example 5.52

Finding an Antiderivative Involving the Inverse Tangent Function

Find an antiderivative of ⌠⌡
1

1 + 4x2dx.

Solution

Comparing this problem with the formulas stated in the rule on integration formulas resulting in inverse

trigonometric functions, the integrand looks similar to the formula for tan−1u + C. So we use substitution,

letting u = 2x, then du = 2dx and 1/2du = dx. Then, we have

1
2
⌠
⌡

1
1 + u2du = 1

2tan−1u + C = 1
2tan−1 (2x) + C.

Use substitution to find the antiderivative ⌠⌡
dx

25 + 4x2.

Example 5.53

Applying the Integration Formulas

Find the antiderivative of ⌠⌡
1

9 + x2dx.

Solution

Apply the formula with a = 3. Then,

⌠
⌡

dx
9 + x2 = 1

3tan−1 ⎛⎝x3
⎞
⎠+ C.

Find the antiderivative of ⌠⌡
dx

16 + x2.

Example 5.54

Evaluating a Definite Integral

Evaluate the definite integral ⌠⌡ 3/3

3
dx

1 + x2.
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Solution

Use the formula for the inverse tangent. We have

⌠
⌡ 3/3

3
dx

1 + x2 = tan−1 x| 3/3

3

= ⎡⎣tan−1 ⎛⎝ 3⎞⎠⎤⎦−
⎡
⎣tan−1 ⎛⎝ 3

3
⎞
⎠
⎤
⎦

= π
6.

Evaluate the definite integral ⌠⌡0

2
dx

4 + x2.
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