
5.4 EXERCISES
Use basic integration formulas to compute the following
antiderivatives or definite integrals.

207. ∫ ⎛⎝ x − 1
x
⎞
⎠dx

208. ⌠⌡
⎛
⎝e2x − 1

2e
x/2⎞⎠dx

209. ⌠⌡
dx
2x

210. ⌠⌡
x − 1
x2 dx

211. ∫
0

π
(sinx − cosx)dx

212. ∫
0

π/2
(x − sinx)dx

213. Write an integral that expresses the increase in the
perimeter P(s) of a square when its side length s increases

from 2 units to 4 units and evaluate the integral.

214. Write an integral that quantifies the change in the

area A(s) = s2 of a square when the side length doubles

from S units to 2S units and evaluate the integral.

215. A regular N-gon (an N-sided polygon with sides that
have equal length s, such as a pentagon or hexagon) has
perimeter Ns. Write an integral that expresses the increase
in perimeter of a regular N-gon when the length of each side
increases from 1 unit to 2 units and evaluate the integral.

216. The area of a regular pentagon with side length

a > 0 is pa2 with p = 1
4 5 + 5 + 2 5. The Pentagon in

Washington, DC, has inner sides of length 360 ft and outer
sides of length 920 ft. Write an integral to express the area
of the roof of the Pentagon according to these dimensions
and evaluate this area.

217. A dodecahedron is a Platonic solid with a surface that
consists of 12 pentagons, each of equal area. By how much
does the surface area of a dodecahedron increase as the side
length of each pentagon doubles from 1 unit to 2 units?

218. An icosahedron is a Platonic solid with a surface that
consists of 20 equilateral triangles. By how much does the
surface area of an icosahedron increase as the side length of
each triangle doubles from a unit to 2a units?

219. Write an integral that quantifies the change in the
area of the surface of a cube when its side length doubles
from s unit to 2s units and evaluate the integral.

220. Write an integral that quantifies the increase in the
volume of a cube when the side length doubles from s unit
to 2s units and evaluate the integral.

221. Write an integral that quantifies the increase in the
surface area of a sphere as its radius doubles from R unit to
2R units and evaluate the integral.

222. Write an integral that quantifies the increase in the
volume of a sphere as its radius doubles from R unit to 2R
units and evaluate the integral.

223. Suppose that a particle moves along a straight line
with velocity v(t) = 4 − 2t, where 0 ≤ t ≤ 2 (in meters

per second). Find the displacement at time t and the total
distance traveled up to t = 2.

224. Suppose that a particle moves along a straight line

with velocity defined by v(t) = t2 − 3t − 18, where

0 ≤ t ≤ 6 (in meters per second). Find the displacement at

time t and the total distance traveled up to t = 6.

225. Suppose that a particle moves along a straight line
with velocity defined by v(t) = |2t − 6|, where

0 ≤ t ≤ 6 (in meters per second). Find the displacement at

time t and the total distance traveled up to t = 6.

226. Suppose that a particle moves along a straight line
with acceleration defined by a(t) = t − 3, where

0 ≤ t ≤ 6 (in meters per second). Find the velocity and

displacement at time t and the total distance traveled up to
t = 6 if v(0) = 3 and d(0) = 0.

227. A ball is thrown upward from a height of 1.5 m at
an initial speed of 40 m/sec. Acceleration resulting from
gravity is −9.8 m/sec2. Neglecting air resistance, solve for
the velocity v(t) and the height h(t) of the ball t seconds

after it is thrown and before it returns to the ground.

228. A ball is thrown upward from a height of 3 m at
an initial speed of 60 m/sec. Acceleration resulting from
gravity is −9.8 m/sec2. Neglecting air resistance, solve for
the velocity v(t) and the height h(t) of the ball t seconds

after it is thrown and before it returns to the ground.

229. The area A(t) of a circular shape is growing at a

constant rate. If the area increases from 4π units to 9π units
between times t = 2 and t = 3, find the net change in the

radius during that time.
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230. A spherical balloon is being inflated at a constant
rate. If the volume of the balloon changes from 36π in.3 to
288π in.3 between time t = 30 and t = 60 seconds, find

the net change in the radius of the balloon during that time.

231. Water flows into a conical tank with cross-sectional

area πx2 at height x and volume πx3

3 up to height x. If

water flows into the tank at a rate of 1 m3/min, find the
height of water in the tank after 5 min. Find the change in
height between 5 min and 10 min.

232. A horizontal cylindrical tank has cross-sectional area

A(x) = 4⎛⎝6x − x2⎞⎠m2 at height x meters above the bottom

when x ≤ 3.
a. The volume V between heights a and b is

∫
a

b
A(x)dx. Find the volume at heights between 2

m and 3 m.
b. Suppose that oil is being pumped into the tank

at a rate of 50 L/min. Using the chain rule,
dx
dt = dx

dV
dV
dt , at how many meters per minute is

the height of oil in the tank changing, expressed in
terms of x, when the height is at x meters?

c. How long does it take to fill the tank to 3 m starting
from a fill level of 2 m?

233. The following table lists the electrical power in
gigawatts—the rate at which energy is consumed—used in
a certain city for different hours of the day, in a typical
24-hour period, with hour 1 corresponding to midnight to 1
a.m.

Hour Power Hour Power

1 28 13 48

2 25 14 49

3 24 15 49

4 23 16 50

5 24 17 50

6 27 18 50

7 29 19 46

8 32 20 43

9 34 21 42

10 39 22 40

11 42 23 37

12 46 24 34

Find the total amount of energy in gigawatt-hours (gW-h)
consumed by the city in a typical 24-hour period.
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234. The average residential electrical power use (in
hundreds of watts) per hour is given in the following table.

Hour Power Hour Power

1 8 13 12

2 6 14 13

3 5 15 14

4 4 16 15

5 5 17 17

6 6 18 19

7 7 19 18

8 8 20 17

9 9 21 16

10 10 22 16

11 10 23 13

12 11 24 11

a. Compute the average total energy used in a day in
kilowatt-hours (kWh).

b. If a ton of coal generates 1842 kWh, how long does
it take for an average residence to burn a ton of
coal?

c. Explain why the data might fit a plot of the form

p(t) = 11.5 − 7.5sin⎛⎝πt12
⎞
⎠.

235. The data in the following table are used to estimate
the average power output produced by Peter Sagan for each
of the last 18 sec of Stage 1 of the 2012 Tour de France.

Second Watts Second Watts

1 600 10 1200

2 500 11 1170

3 575 12 1125

4 1050 13 1100

5 925 14 1075

6 950 15 1000

7 1050 16 950

8 950 17 900

9 1100 18 780

Table 5.6 Average Power Output Source:
sportsexercisengineering.com

Estimate the net energy used in kilojoules (kJ), noting that
1W = 1 J/s, and the average power output by Sagan during
this time interval.
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236. The data in the following table are used to estimate
the average power output produced by Peter Sagan for each
15-min interval of Stage 1 of the 2012 Tour de France.

Minutes Watts Minutes Watts

15 200 165 170

30 180 180 220

45 190 195 140

60 230 210 225

75 240 225 170

90 210 240 210

105 210 255 200

120 220 270 220

135 210 285 250

150 150 300 400

Table 5.7 Average Power Output Source:
sportsexercisengineering.com

Estimate the net energy used in kilojoules, noting that 1W
= 1 J/s.

237. The distribution of incomes as of 2012 in the United
States in $5000 increments is given in the following table.
The kth row denotes the percentage of households with
incomes between $5000xk and 5000xk + 4999. The row

k = 40 contains all households with income between

$200,000 and $250,000 and k = 41 accounts for all

households with income exceeding $250,000.
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0 3.5 21 1.5

1 4.1 22 1.4

2 5.9 23 1.3

3 5.7 24 1.3

4 5.9 25 1.1

5 5.4 26 1.0

6 5.5 27 0.75

7 5.1 28 0.8

8 4.8 29 1.0

9 4.1 30 0.6

10 4.3 31 0.6

11 3.5 32 0.5

12 3.7 33 0.5

13 3.2 34 0.4

14 3.0 35 0.3

15 2.8 36 0.3

16 2.5 37 0.3

17 2.2 38 0.2

18 2.2 39 1.8

Table 5.8 Income
Distributions Source:
http://www.census.gov/
prod/2013pubs/p60-245.pdf

19 1.8 40 2.3

20 2.1 41

Table 5.8 Income
Distributions Source:
http://www.census.gov/
prod/2013pubs/p60-245.pdf

a. Estimate the percentage of U.S. households in 2012
with incomes less than $55,000.

b. What percentage of households had incomes
exceeding $85,000?

c. Plot the data and try to fit its shape to that of a

graph of the form a(x + c)e−b(x + e)
for suitable

a, b, c.

238. Newton’s law of gravity states that the gravitational
force exerted by an object of mass M and one of mass
m with centers that are separated by a distance r is

F = GmM
r2 , with G an empirical constant

G = 6.67x10−11 m3 /⎛⎝kg · s2⎞⎠. The work done by a

variable force over an interval ⎡
⎣a, b⎤⎦ is defined as

W = ∫
a

b
F(x)dx. If Earth has mass 5.97219 × 1024 and

radius 6371 km, compute the amount of work to elevate
a polar weather satellite of mass 1400 kg to its orbiting
altitude of 850 km above Earth.

239. For a given motor vehicle, the maximum achievable
deceleration from braking is approximately 7 m/sec2 on dry
concrete. On wet asphalt, it is approximately 2.5 m/sec2.
Given that 1 mph corresponds to 0.447 m/sec, find the total
distance that a car travels in meters on dry concrete after the
brakes are applied until it comes to a complete stop if the
initial velocity is 67 mph (30 m/sec) or if the initial braking
velocity is 56 mph (25 m/sec). Find the corresponding
distances if the surface is slippery wet asphalt.

240. John is a 25-year old man who weighs 160 lb. He
burns 500 − 50t calories/hr while riding his bike for t

hours. If an oatmeal cookie has 55 cal and John eats 4t
cookies during the tth hour, how many net calories has he
lost after 3 hours riding his bike?

241. Sandra is a 25-year old woman who weighs 120
lb. She burns 300 − 50t cal/hr while walking on her

treadmill. Her caloric intake from drinking Gatorade is 100t
calories during the tth hour. What is her net decrease in
calories after walking for 3 hours?
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242. A motor vehicle has a maximum efficiency of 33
mpg at a cruising speed of 40 mph. The efficiency drops at
a rate of 0.1 mpg/mph between 40 mph and 50 mph, and at
a rate of 0.4 mpg/mph between 50 mph and 80 mph. What
is the efficiency in miles per gallon if the car is cruising at
50 mph? What is the efficiency in miles per gallon if the car
is cruising at 80 mph? If gasoline costs $3.50/gal, what is
the cost of fuel to drive 50 mi at 40 mph, at 50 mph, and at
80 mph?

243. Although some engines are more efficient at given
a horsepower than others, on average, fuel efficiency
decreases with horsepower at a rate of 1/25 mpg/

horsepower. If a typical 50-horsepower engine has an
average fuel efficiency of 32 mpg, what is the average fuel
efficiency of an engine with the following horsepower: 150,
300, 450?

244. [T] The following table lists the 2013 schedule of
federal income tax versus taxable income.

Taxable Income
Range

The Tax Is
…

… Of the
Amount
Over

$0–$8925 10% $0

$8925–$36,250
$892.50 +
15%

$8925

$36,250–$87,850
$4,991.25 +
25%

$36,250

$87,850–$183,250
$17,891.25
+ 28%

$87,850

$183,250–$398,350
$44,603.25
+ 33%

$183,250

$398,350–$400,000
$115,586.25
+ 35%

$398,350

> $400,000
$116,163.75
+ 39.6%

$400,000

Table 5.9 Federal Income Tax Versus Taxable
Income Source: http://www.irs.gov/pub/irs-prior/
i1040tt--2013.pdf.

Suppose that Steve just received a $10,000 raise. How
much of this raise is left after federal taxes if Steve’s salary
before receiving the raise was $40,000? If it was $90,000?
If it was $385,000?

245. [T] The following table provides hypothetical data
regarding the level of service for a certain highway.

Highway
Speed Range
(mph)

Vehicles per
Hour per
Lane

Density
Range
(vehicles/
mi)

> 60 < 600 < 10

60–57 600–1000 10–20

57–54 1000–1500 20–30

54–46 1500–1900 30–45

46–30 1900–2100 45–70

<30 Unstable 70–200

Table 5.10

a. Plot vehicles per hour per lane on the x-axis and
highway speed on the y-axis.

b. Compute the average decrease in speed (in miles
per hour) per unit increase in congestion (vehicles
per hour per lane) as the latter increases from 600 to
1000, from 1000 to 1500, and from 1500 to 2100.
Does the decrease in miles per hour depend linearly
on the increase in vehicles per hour per lane?

c. Plot minutes per mile (60 times the reciprocal of
miles per hour) as a function of vehicles per hour
per lane. Is this function linear?

For the next two exercises use the data in the following
table, which displays bald eagle populations from 1963 to
2000 in the continental United States.
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Year
Population of Breeding Pairs of
Bald Eagles

1963 487

1974 791

1981 1188

1986 1875

1992 3749

1996 5094

2000 6471

Table 5.11 Population of Breeding Bald Eagle
Pairs Source: http://www.fws.gov/Midwest/eagle/
population/chtofprs.html.

246. [T] The graph below plots the quadratic

p(t) = 6.48t2 − 80.3 1t + 585.69 against the data in

preceding table, normalized so that t = 0 corresponds to

1963. Estimate the average number of bald eagles per year
present for the 37 years by computing the average value of
p over [0, 37].

247. [T] The graph below plots the cubic

p(t) = 0.07t3 + 2.42t2 − 25.63t + 521.23 against the

data in the preceding table, normalized so that t = 0
corresponds to 1963. Estimate the average number of bald
eagles per year present for the 37 years by computing the
average value of p over [0, 37].

248. [T] Suppose you go on a road trip and record your
speed at every half hour, as compiled in the following
table. The best quadratic fit to the data is

q(t) = 5x2 − 11x + 49, shown in the accompanying

graph. Integrate q to estimate the total distance driven over
the 3 hours.

Time (hr) Speed (mph)

0 (start) 50

1 40

2 50

3 60

As a car accelerates, it does not accelerate at a constant
rate; rather, the acceleration is variable. For the following
exercises, use the following table, which contains the
acceleration measured at every second as a driver merges
onto a freeway.
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Time (sec) Acceleration (mph/sec)

1 11.2

2 10.6

3 8.1

4 5.4

5 0

249. [T] The accompanying graph plots the best quadratic

fit, a(t) = −0.70t2 + 1.44t + 10.44, to the data from the

preceding table. Compute the average value of a(t) to

estimate the average acceleration between t = 0 and

t = 5.

250. [T] Using your acceleration equation from the
previous exercise, find the corresponding velocity
equation. Assuming the final velocity is 0 mph, find the
velocity at time t = 0.

251. [T] Using your velocity equation from the previous
exercise, find the corresponding distance equation,
assuming your initial distance is 0 mi. How far did you
travel while you accelerated your car? (Hint: You will need
to convert time units.)

252. [T] The number of hamburgers sold at a restaurant
throughout the day is given in the following table, with the
accompanying graph plotting the best cubic fit to the data,

b(t) = 0.12t3 − 2.13t3 + 12.13t + 3.91, with t = 0
corresponding to 9 a.m. and t = 12 corresponding to 9

p.m. Compute the average value of b(t) to estimate the

average number of hamburgers sold per hour.

Hours Past Midnight No. of Burgers Sold

9 3

12 28

15 20

18 30

21 45
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253. [T] An athlete runs by a motion detector, which
records her speed, as displayed in the following table. The
best linear fit to this data, ℓ(t) = −0.068t + 5.14, is

shown in the accompanying graph. Use the average value
of ℓ(t) between t = 0 and t = 40 to estimate the

runner’s average speed.

Minutes Speed (m/sec)

0 5

10 4.8

20 3.6

30 3.0

40 2.5
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