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4.2 | Linear Approximations and Differentials

Learning Objectives

4.2.1 Describe the linear approximation to a function at a point.

4.2.2 Write the linearization of a given function.

4.2.3 Draw a graph that illustrates the use of differentials to approximate the change in a
guantity.

4.2.4 Calculate the relative error and percentage error in using a differential approximation.

We have just seen how derivatives allow us to compare related quantities that are changing over time. In this section, we
examine another application of derivatives: the ability to approximate functions locally by linear functions. Linear functions
are the easiest functions with which to work, so they provide a useful tool for approximating function values. In addition,
the ideas presented in this section are generalized later in the text when we study how to approximate functions by higher-
degree polynomials Introduction to Power Series and Functions (http://cnx.org/content/m53760/latest/) .

Linear Approximation of a Function at a Point
Consider a function f that is differentiable at a point x = a. Recall that the tangent line to the graph of f at a is given
by the equation
y=f@+ f@x-a).
1

X

1

For example, consider the function f(x) =+ at a =2. Since f is differentiable at x =2 and f'(x) = — =5
X

we see

that f'(2) = — % Therefore, the tangent line to the graph of f at a =2 is given by the equation

=1 _1_

1

Figure 4.7(a) shows a graph of f(x) = 4 along with the tangent line to f* at x = 2. Note that for x near 2, the graph of

the tangent line is close to the graph of f. As a result, we can use the equation of the tangent line to approximate f(x) for

x near 2. For example, if x =2.1, the y value of the corresponding point on the tangent line is

y=1-tei-2=04s

=

The actual value of f(2.1) is given by

—_1 5
f1) =5~ 047619,

Therefore, the tangent line gives us a fairly good approximation of f(2.1) (Figure 4.7(b)). However, note that for values
of x far from 2, the equation of the tangent line does not give us a good approximation. For example, if x = 10, the y
-value of the corresponding point on the tangent line is

=1 _lago_n=1l_o_-_
y=3-2(10-2) 2=-15,

1
2

whereas the value of the function at x = 10 is f(10) = 0.1.
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Figure 4.7 (a) The tangent line to f(x) = 1/x at x = 2 provides a good approximation to f for x near 2.
(b) At x = 2.1, the value of y on the tangent line to f(x) = 1/x is 0.475. The actual value of f(2.1) is
1/2.1, which is approximately 0.47619.

In general, for a differentiable function f, the equation of the tangent line to f at x = a can be used to approximate

f(x) for x near a. Therefore, we can write
f(x) = f(a) + f'(a)(x — a) for x near a.
We call the linear function
L(x) = f(a) + f'(@)(x — a) (4.1)

the linear approximation, or tangent line approximation, of f at x =a. This function L is also known as the

linearization of f at x = a.

To show how useful the linear approximation can be, we look at how to find the linear approximation for f(x) = vx at
x=09.

Example 4.5

Linear Approximation of vx

Find the linear approximation of f(x) = vx at x =9 and use the approximation to estimate V9.1.

Solution
Since we are looking for the linear approximation at x =9, using Equation 4.1 we know the linear
approximation is given by

Lx)=fO)+ 9D -9).
We need to find f(9) and f'(9).
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f)=v¥ = f9) =19=3

() = =L 9y =—1 =1
Therefore, the linear approximation is given by Figure 4.8.

L(x) =3 +%(x -9)

Using the linear approximation, we can estimate V9.1 by writing

V9.1 = £(9.1) ~ L(9.1) = 3 +%(9.1 —9) ~3.0167.

yi
64

3
L) = 5x+ 5

H 9.3

Figure 4.8 The local linear approximation to f(x) = vx at

x =9 provides an approximation to f for x near 9.

Analysis
Using a calculator, the value of V9.1 to four decimal places is 3.0166. The value given by the linear

approximation, 3.0167, is very close to the value obtained with a calculator, so it appears that using this linear
approximation is a good way to estimate VX, at least for x near 9. At the same time, it may seem odd to use

a linear approximation when we can just push a few buttons on a calculator to evaluate V9.1. However, how
does the calculator evaluate V9.1? The calculator uses an approximation! In fact, calculators and computers use
approximations all the time to evaluate mathematical expressions; they just use higher-degree approximations.

3
@ 45 Rind the local linear approximation to f(x) = Ix at x=8. Use it to approximate V8.1 to five decimal

places.

Example 4.6

Linear Approximation of sinx

Find the linear approximation of f(x) = sinx at x = % and use it to approximate sin(62°).

Solution

First we note that since Z rad is equivalent to 60°, using the linear approximation at x = /3 seems

3
reasonable. The linear approximation is given by

o = (5)+ (5o -)
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We see that
— g ) = sin(Z) = 13
f(x) =sinx => f(3) sm(3) 5
’ — ’ l
f'(x) =cosx = f( )—005(3) >
Therefore, the linear approximation of f at x = z/3 is given by Figure 4.9.

o= 5=

To estimate sin(62°) using L, we must first convert 62° to radians. We have 62° = 627 yadians, so the

180
estimate for sin(62°) is given by
; o_@~@_ﬁl62_ﬂ__£l_£_
Sm(62)_f(180)~L(180)_2+2(180 3) 2 2(180) 3 T g0~ 0-88348.
v
2-.
W3 1
y=E|EX —|
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1+ \3 2
f(x) = sin(x)
1//4 T 5 s~ 45X
_1-.

Figure 4.9 The linear approximation to f(x) = sinx at x = /3 provides an approximation

to sinx for x near z/3.

@’ 4.6 Find the linear approximation for f(x) = cosx at x = %

Linear approximations may be used in estimating roots and powers. In the next example, we find the linear approximation
for f(x)=(1+x)" at x=0, which can be used to estimate roots and powers for real numbers near 1. The same idea

can be extended to a function of the form f(x) = (m + x)" to estimate roots and powers near a different number .

Example 4.7

Approximating Roots and Powers

Find the linear approximation of f(x) = (1 + x)" at x = 0. Use this approximation to estimate (1.01)3.

Solution

The linear approximation at x = O is given by
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L(x) = f(0) + f'(0)(x = 0).

Because
fO=1+0" = f0)=1
f@=n1+0""1 > f(O)=n,

the linear approximation is given by Figure 4.10(a).
Lx)=14+nx-0)=1+nx

We can approximate (1.01)3 by evaluating L(0.01) when n = 3. We conclude that

(1.01)3 = f(1.01) = L(1.01) = 1 4+ 3(0.01) = 1.03.

Yi yi
31 1.032¢ ,
L(x) = 1+ 3x L0351 fx) = (L +x)°
Lix) =1 + 3x
2+ 1.031+
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-2 -1 1 2 X
1.0285+
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@ (b)

Figure 4.10 (a) The linear approximation of f(x) at x = 0 is L(x). (b) The actual value of 1.013 is

1.030301. The linear approximation of f(x) at x = 0 estimates 1.013 to be 1.03.

4.7 Find the linear approximation of f(x) = (1 + x)4 at x = 0 without using the result from the preceding

example.

Differentials

We have seen that linear approximations can be used to estimate function values. They can also be used to estimate the
amount a function value changes as a result of a small change in the input. To discuss this more formally, we define a related
concept: differentials. Differentials provide us with a way of estimating the amount a function changes as a result of a small
change in input values.

When we first looked at derivatives, we used the Leibniz notation dy/dx to represent the derivative of y with respect to

x. Although we used the expressions dy and dx in this notation, they did not have meaning on their own. Here we see a
meaning to the expressions dy and dx. Suppose y = f(x) is a differentiable function. Let dx be an independent variable that

can be assigned any nonzero real number, and define the dependent variable dy by
dy = f'(x)dx. (4.2)

It is important to notice that dy is a function of both x and dx. The expressions dy and dx are called differentials. We can
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divide both sides of Equation 4.2 by dx, which yields

dy (4.3)
=@

This is the familiar expression we have used to denote a derivative. Equation 4.2 is known as the differential form of
Equation 4.3.

Example 4.8

Computing differentials

For each of the following functions, find dy and evaluate when x =3 and dx = 0.1.
a. y= x% +2x

b. y=cosx

Solution

The key step is calculating the derivative. When we have that, we can obtain dy directly.
a. Since f(x)= 2+ 2x, weknow f’(x) =2x+2, and therefore

dy = (2x + 2)dx.

When x =3 and dx = 0.1,
dy=(2-3+2)0.1)=0.8.

b. Since f(x) =cosx, f'(x)= —sin(x). This gives us
dy = —sinxdx.

When x =3 and dx =0.1,
dy = —sin(3)(0.1) = —0.15sin(3).

2
@ 48 o y=e¢e*, find dy.

We now connect differentials to linear approximations. Differentials can be used to estimate the change in the value of a
function resulting from a small change in input values. Consider a function f that is differentiable at point a. Suppose

the input x changes by a small amount. We are interested in how much the output y changes. If x changes from a to

a + dx, then the change in x is dx (also denoted Ax), and the changein y is given by

Ay = f(a+ dx) — f(a).

Instead of calculating the exact change in y, however, it is often easier to approximate the change in y by using a linear

approximation. For x near a, f(x) can be approximated by the linear approximation

L(x) = f(a) + f'(@)(x — a).
Therefore, if dx is small,

fla+dx) =~ L(a+dx) = f(a) + f'(a)(a + dx — a).
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That s,
fla+dx) — f(a) = L(a + dx) — f(a) = f'(a)dx.
In other words, the actual change in the function f if x increases from a to a+ dx is approximately the difference

between L(a + dx) and f(a), where L(x) is the linear approximation of f at a. By definition of L(x), this difference

is equal to f'(a)dx. In summary,
Ay = f(a+dx) — f(a) = L(a + dx) — f(a) = f'(a)dx = dy.

Therefore, we can use the differential dy = f'(a)dx to approximate the change in y if x increases from x =a to

X = a + dx. We can see this in the following graph.

yi
L(x)
(a + dx, fla + dx))
= [
] " :
by = rayax] &Y = 1@+ a0 - f@
________ R R |
.. -
a a+dx X

Figure 4.11 The differential dy = f'(a)dx is used to approximate the actual

change in y if x increases from a to a + dx.

We now take a look at how to use differentials to approximate the change in the value of the function that results from a
small change in the value of the input. Note the calculation with differentials is much simpler than calculating actual values
of functions and the result is very close to what we would obtain with the more exact calculation.

Example 4.9

Approximating Change with Differentials
Let y = x% +2x. Compute Ay anddyat x =3 if dx =0.1.
Solution

The actual change in y if x changes from x =3 to x = 3.1 is given by

Ay = f3.1) = f3) = [3.1)2 +2(3.1)] - [3% + 2(3)] = 0.81.
The approximate change in y is given by dy = f'(3)dx. Since f'(x) =2x+ 2, we have
dy = f'(3)dx = (2(3) + 2)(0.1) = 0.8.

@ 49 For y=x%+2x, find Ay and dy at x =3 if dx=0.2.
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Calculating the Amount of Error

Any type of measurement is prone to a certain amount of error. In many applications, certain quantities are calculated based
on measurements. For example, the area of a circle is calculated by measuring the radius of the circle. An error in the
measurement of the radius leads to an error in the computed value of the area. Here we examine this type of error and study
how differentials can be used to estimate the error.

Consider a function f with an input that is a measured quantity. Suppose the exact value of the measured quantity is a,
but the measured value is a + dx. We say the measurement error is dx (or Ax). As aresult, an error occurs in the calculated

quantity f(x). This type of error is known as a propagated error and is given by

Ay = f(a+ dx) — f(a).

Since all measurements are prone to some degree of error, we do not know the exact value of a measured quantity, so we
cannot calculate the propagated error exactly. However, given an estimate of the accuracy of a measurement, we can use
differentials to approximate the propagated error Ay. Specifically, if f is a differentiable function at a, the propagated

error is

Ay = dy = f'(a)dx.
Unfortunately, we do not know the exact value a. However, we can use the measured value a + dx, and estimate
Ay~ dy~ f'(a+ dx)dx.

In the next example, we look at how differentials can be used to estimate the error in calculating the volume of a box if we
assume the measurement of the side length is made with a certain amount of accuracy.

Example 4.10

Volume of a Cube

Suppose the side length of a cube is measured to be 5 cm with an accuracy of 0.1 cm.
a. Use differentials to estimate the error in the computed volume of the cube.

b. Compute the volume of the cube if the side length is (i) 4.9 cm and (ii) 5.1 cm to compare the estimated
error with the actual potential error.

Solution

a. The measurement of the side length is accurate to within +0.1 cm. Therefore,

-0.1 <dx<0.1.

The volume of a cube is given by V = x? , which leads to

dV = 3x%dx.

Using the measured side length of 5 cm, we can estimate that

—-3(5)%(0.1) < dV < 3(5)%0.1).

Therefore,
—-75<dV <75,
b. If the side length is actually 4.9 cm, then the volume of the cube is

V(4.9) = (4.9)3 = 117.649 cm>.
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If the side length is actually 5.1 cm, then the volume of the cube is

V(5.1) = (5.1)3 = 132.651 cm>.

Therefore, the actual volume of the cube is between 117.649 and 132.651. Since the side length is
measured to be 5 cm, the computed volume is V(5) =5 3 =125. Therefore, the error in the computed

volume is

117.649 — 125 < AV < 132.651 — 125.

That is,
—-7.351 < AV < 7.651.

We see the estimated error dV is relatively close to the actual potential error in the computed volume.

4.10 Estimate the error in the computed volume of a cube if the side length is measured to be 6 cm with an
accuracy of 0.2 cm.

The measurement error dx (=Ax) and the propagated error Ay are absolute errors. We are typically interested in the size

of an error relative to the size of the quantity being measured or calculated. Given an absolute error Ag for a particular

quantity, we define the relative error as where ¢ is the actual value of the quantity. The percentage error is the

Aq

q 9
relative error expressed as a percentage. For example, if we measure the height of a ladder to be 63 in. when the actual
-

height is 62 in., the absolute error is 1 in. but the relative error is o

0.016, or 1.6%. By comparison, if we measure the

width of a piece of cardboard to be 8.25 in. when the actual width is 8 in., our absolute error is % in., whereas the relative

erroris 225 = L o1 3.1%. Therefore, the percentage error in the measurement of the cardboard is larger, even though

8 32
0.25in. is less than 1 in.

Example 4.11

Relative and Percentage Error

An astronaut using a camera measures the radius of Earth as 4000 mi with an error of +80 mi. Let’s use

differentials to estimate the relative and percentage error of using this radius measurement to calculate the volume
of Earth, assuming the planet is a perfect sphere.

Solution

If the measurement of the radius is accurate to within +80, we have

—80 < dr < 80.

Since the volume of a sphere is given by V = (%)mﬁ, we have
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dV = 4xrtdr.
Using the measured radius of 4000 mi, we can estimate
—47(4000)%(80) < dV < 47(4000)%(80).

To estimate the relative error, consider d_V. Since we do not know the exact value of the volume V, use the

\%
measured radius » = 4000 mi to estimate V. We obtain V =~ (%)1(4000)3. Therefore the relative error satisfies
—47(4000)%(80) _ gv. _ 47(4000)*(80)
47(4000)°73 V' T 47(4000)°/3
which simplifies to
—0.06 < 4 < 0.06.

The relative error is 0.06 and the percentage error is 6%.

@ 4.11 Determine the percentage error if the radius of Earth is measured to be 3950 mi with an error of +100
mi.



