4.6 EXERCISES

For the following exercises, examine the graphs. Identify where the vertical asymptotes are located.
251.

252.

253.

254.

255.

For the following functions $f(x)$, determine whether there is an asymptote at $x=a$. Justify your answer without graphing on a calculator.
256. $f(x)=\frac{x+1}{x^{2}+5 x+4}, a=-1$
257. $f(x)=\frac{x}{x-2}, a=2$
258. $f(x)=(x+2)^{3 / 2}, a=-2$
259. $f(x)=(x-1)^{-1 / 3}, a=1$
260. $f(x)=1+x^{-2 / 5}, a=1$

For the following exercises, evaluate the limit.
261. $\lim _{x \rightarrow \infty} \frac{1}{3 x+6}$
262. $\lim _{x \rightarrow \infty} \frac{2 x-5}{4 x}$
263. $\lim _{x \rightarrow \infty} \frac{x^{2}-2 x+5}{x+2}$
264. $\lim _{x \rightarrow-\infty} \frac{3 x^{3}-2 x}{x^{2}+2 x+8}$
265. $\lim _{x \rightarrow-\infty} \frac{x^{4}-4 x^{3}+1}{2-2 x^{2}-7 x^{4}}$
266. $\lim _{x \rightarrow \infty} \frac{3 x}{\sqrt{x^{2}+1}}$
267. $\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}-1}}{x+2}$
268. $\lim _{x \rightarrow \infty} \frac{4 x}{\sqrt{x^{2}-1}}$
269. $\lim _{x \rightarrow-\infty} \frac{4 x}{\sqrt{x^{2}-1}}$
270. $\lim _{x \rightarrow \infty} \frac{2 \sqrt{x}}{x-\sqrt{x}+1}$

For the following exercises, find the horizontal and vertical asymptotes.
271. $f(x)=x-\frac{9}{x}$
272. $f(x)=\frac{1}{1-x^{2}}$
273. $f(x)=\frac{x^{3}}{4-x^{2}}$
274. $f(x)=\frac{x^{2}+3}{x^{2}+1}$
275. $f(x)=\sin (x) \sin (2 x)$
276. $f(x)=\cos x+\cos (3 x)+\cos (5 x)$
277. $f(x)=\frac{x \sin (x)}{x^{2}-1}$
278. $f(x)=\frac{x}{\sin (x)}$
279. $f(x)=\frac{1}{x^{3}+x^{2}}$
280. $f(x)=\frac{1}{x-1}-2 x$
281. $f(x)=\frac{x^{3}+1}{x^{3}-1}$
282. $f(x)=\frac{\sin x+\cos x}{\sin x-\cos x}$
283. $f(x)=x-\sin x$
284. $f(x)=\frac{1}{x}-\sqrt{x}$

For the following exercises, construct a function $f(x)$ that has the given asymptotes.
285. $x=1$ and $y=2$
286. $x=1$ and $y=0$
287. $y=4, \quad x=-1$
288. $x=0$

For the following exercises, graph the function on a graphing calculator on the window $x=[-5,5]$ and estimate the horizontal asymptote or limit. Then, calculate the actual horizontal asymptote or limit.
289. [T] $f(x)=\frac{1}{x+10}$
290. [T] $f(x)=\frac{x+1}{x^{2}+7 x+6}$
291. [T] $\lim _{x \rightarrow-\infty} x^{2}+10 x+25$
292. [T] $\lim _{x \rightarrow-\infty} \frac{x+2}{x^{2}+7 x+6}$
293. [T] $\lim _{x \rightarrow \infty} \frac{3 x+2}{x+5}$

For the following exercises, draw a graph of the functions without using a calculator. Be sure to notice all important features of the graph: local maxima and minima, inflection points, and asymptotic behavior.
294. $y=3 x^{2}+2 x+4$
295. $y=x^{3}-3 x^{2}+4$
296. $y=\frac{2 x+1}{x^{2}+6 x+5}$
297. $y=\frac{x^{3}+4 x^{2}+3 x}{3 x+9}$
298. $y=\frac{x^{2}+x-2}{x^{2}-3 x-4}$
299. $y=\sqrt{x^{2}-5 x+4}$
300. $y=2 x \sqrt{16-x^{2}}$
301. $y=\frac{\cos x}{x}$, on $x=[-2 \pi, 2 \pi]$
302. $y=e^{x}-x^{3}$
303. $y=x \tan x, x=[-\pi, \pi]$
304. $y=x \ln (x), x>0$
305. $y=x^{2} \sin (x), x=[-2 \pi, 2 \pi]$
306. For $f(x)=\frac{P(x)}{Q(x)}$ to have an asymptote at $y=2$ then the polynomials $P(x)$ and $Q(x)$ must have what relation?
307. For $f(x)=\frac{P(x)}{Q(x)}$ to have an asymptote at $x=0$, then the polynomials $P(x)$ and $Q(x)$. must have what relation?
308. If $f^{\prime}(x)$ has asymptotes at $y=3$ and $x=1$, then $f(x)$ has what asymptotes?
309. Both $f(x)=\frac{1}{(x-1)}$ and $g(x)=\frac{1}{(x-1)^{2}}$ have asymptotes at $x=1$ and $y=0$. What is the most obvious difference between these two functions?
310. True or false: Every ratio of polynomials has vertical asymptotes.

