4.6 EXERCISES

For the following exercises, examine the graphs. Identify 2 where the vertical asymptotes are located.

251.

252.

253.

For the following functions f(x), determine whether there is an asymptote at x = a. Justify your answer without graphing on a calculator.

- 256. $f(x) = \frac{x+1}{x^2+5x+4}, a = -1$
- 257. $f(x) = \frac{x}{x-2}, a = 2$

258.
$$f(x) = (x+2)^{3/2}, a = -2$$

259.
$$f(x) = (x-1)^{-1/3}, a = 1$$

260.
$$f(x) = 1 + x^{-2/5}, a = 1$$

For the following exercises, evaluate the limit.

$$261. \quad \lim_{x \to \infty} \frac{1}{3x + 6}$$

262.
$$\lim_{x \to \infty} \frac{2x-5}{4x}$$
263.
$$\lim_{x \to \infty} \frac{x^2-2x+5}{x+2}$$
264.
$$\lim_{x \to \infty} \frac{3x^3-2x}{x^2+2x+8}$$
265.
$$\lim_{x \to -\infty} \frac{x^4-4x^3+1}{2-2x^2-7x^4}$$
266.
$$\lim_{x \to \infty} \frac{3x}{\sqrt{x^2+1}}$$
267.
$$\lim_{x \to -\infty} \frac{\sqrt{4x^2-1}}{x+2}$$
268.
$$\lim_{x \to \infty} \frac{4x}{\sqrt{x^2-1}}$$
269.
$$\lim_{x \to \infty} \frac{4x}{\sqrt{x^2-1}}$$
270.
$$\lim_{x \to \infty} \frac{2\sqrt{x}}{x-\sqrt{x}+1}$$

For the following exercises, find the horizontal and vertical asymptotes.

 $+\cos(5x)$

271.
$$f(x) = x - \frac{9}{x}$$

272. $f(x) = \frac{1}{1 - x^2}$
273. $f(x) = \frac{x^3}{4 - x^2}$
274. $f(x) = \frac{x^2 + 3}{x^2 + 1}$
275. $f(x) = \sin(x)\sin(2x)$
276. $f(x) = \cos x + \cos(3x)$
277. $f(x) = \frac{x\sin(x)}{x^2 - 1}$
278. $f(x) = \frac{x}{\sin(x)}$
279. $f(x) = \frac{1}{x^3 + x^2}$
280. $f(x) = \frac{1}{x - 1} - 2x$

281.
$$f(x) = \frac{x^3 + 1}{x^3 - 1}$$

282.
$$f(x) = \frac{\sin x + \cos x}{\sin x - \cos x}$$

283.
$$f(x) = x - \sin x$$

284.
$$f(x) = \frac{1}{x} - \sqrt{x}$$

For the following exercises, construct a function f(x) that has the given asymptotes.

285. x = 1 and y = 2286. x = 1 and y = 0287. y = 4, x = -1288. x = 0

For the following exercises, graph the function on a graphing calculator on the window x = [-5, 5] and estimate the horizontal asymptote or limit. Then, calculate the actual horizontal asymptote or limit.

289. **[T]** $f(x) = \frac{1}{x+10}$ 290. **[T]** $f(x) = \frac{x+1}{x^2+7x+6}$ 291. **[T]** $\lim_{x \to -\infty} x^2 + 10x + 25$ 292. **[T]** $\lim_{x \to -\infty} \frac{x+2}{x^2+7x+6}$ 293. **[T]** $\lim_{x \to \infty} \frac{3x+2}{x+5}$

For the following exercises, draw a graph of the functions without using a calculator. Be sure to notice all important features of the graph: local maxima and minima, inflection points, and asymptotic behavior.

294.
$$y = 3x^{2} + 2x + 4$$

295. $y = x^{3} - 3x^{2} + 4$
296. $y = \frac{2x + 1}{x^{2} + 6x + 5}$
297. $y = \frac{x^{3} + 4x^{2} + 3x}{3x + 9}$

298.
$$y = \frac{x^2 + x - 2}{x^2 - 3x - 4}$$

299. $y = \sqrt{x^2 - 5x + 4}$
300. $y = 2x\sqrt{16 - x^2}$
301. $y = \frac{\cos x}{x}$, on $x = [-2\pi, 2\pi]$
302. $y = e^x - x^3$
303. $y = x \tan x, x = [-\pi, \pi]$
304. $y = x \ln(x), x > 0$
305. $y = x^2 \sin(x), x = [-2\pi, 2\pi]$

306. For $f(x) = \frac{P(x)}{Q(x)}$ to have an asymptote at y = 2 then the polynomials P(x) and Q(x) must have what relation?

307. For $f(x) = \frac{P(x)}{Q(x)}$ to have an asymptote at x = 0, then the polynomials P(x) and Q(x). must have what relation?

308. If f'(x) has asymptotes at y = 3 and x = 1, then f(x) has what asymptotes?

309. Both $f(x) = \frac{1}{(x-1)}$ and $g(x) = \frac{1}{(x-1)^2}$ have

asymptotes at x = 1 and y = 0. What is the most obvious difference between these two functions?

310. True or false: Every ratio of polynomials has vertical asymptotes.