4.5 EXERCISES

194. If c is a critical point of $f(x)$, when is there no local maximum or minimum at c ? Explain.
195. For the function $y=x^{3}$, is $x=0$ both an inflection point and a local maximum/minimum?
196. For the function $y=x^{3}$, is $x=0$ an inflection point?
197. Is it possible for a point c to be both an inflection point and a local extrema of a twice differentiable function?
198. Why do you need continuity for the first derivative test? Come up with an example.
199. Explain whether a concave-down function has to cross $y=0$ for some value of x.
200. Explain whether a polynomial of degree 2 can have an inflection point.

For the following exercises, analyze the graphs of f^{\prime}, then list all intervals where f is increasing or decreasing.
201.

202.

203.

204.

205.

For the following exercises, analyze the graphs of f^{\prime}, then list all intervals where
a. $\quad f$ is increasing and decreasing and
b. the minima and maxima are located.
206.

207.

208.

209.

210.

For the following exercises, analyze the graphs of f^{\prime}, then list all inflection points and intervals f that are concave up and concave down.
211.

212.

213.

214.

215.

For the following exercises, draw a graph that satisfies the given specifications for the domain $x=[-3,3]$. The function does not have to be continuous or differentiable.
216.

$$
f(x)>0, f^{\prime}(x)>0
$$

over
$x>1,-3<x<0, f^{\prime}(x)=0$ over $0<x<1$
217. $f^{\prime}(x)>0$ over $x>2,-3<x<-1, f^{\prime}(x)<0$ over $-1<x<2, f^{\prime \prime}(x)<0$ for all x
218.

$$
f^{\prime \prime}(x)<0
$$

over
$-1<x<1, f^{\prime \prime}(x)>0,-3<x<-1,1<x<3$,
local maximum at $x=0$, local minima at $x= \pm 2$
219. There is a local maximum at $x=2$, local minimum at $x=1$, and the graph is neither concave up nor concave down.
220. There are local maxima at $x= \pm 1$, the function is concave up for all x, and the function remains positive for all x.

For the following exercises, determine
a. intervals where f is increasing or decreasing and
b. local minima and maxima of f.
221. $f(x)=\sin x+\sin ^{3} x$ over $-\pi<x<\pi$
222. $f(x)=x^{2}+\cos x$

For the following exercises, determine a. intervals where f is concave up or concave down, and b. the inflection points of f.
223. $f(x)=x^{3}-4 x^{2}+x+2$

For the following exercises, determine
a. intervals where f is increasing or decreasing,
b. local minima and maxima of f,
c. intervals where f is concave up and concave down, and
d. the inflection points of f.
224. $f(x)=x^{2}-6 x$
225. $f(x)=x^{3}-6 x^{2}$
226. $f(x)=x^{4}-6 x^{3}$
227. $f(x)=x^{11}-6 x^{10}$
228. $f(x)=x+x^{2}-x^{3}$
229. $f(x)=x^{2}+x+1$
230. $f(x)=x^{3}+x^{4}$

For the following exercises, determine
a. intervals where f is increasing or decreasing,
b. local minima and maxima of f,
c. intervals where f is concave up and concave down, and
d. the inflection points of f. Sketch the curve, then use a calculator to compare your answer. If you cannot determine the exact answer analytically, use a calculator.
231. [T] $f(x)=\sin (\pi x)-\cos (\pi x)$ over $x=[-1,1]$
232. [T] $f(x)=x+\sin (2 x)$ over $x=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
233. [T] $f(x)=\sin x+\tan x$ over $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
234. [T] $f(x)=(x-2)^{2}(x-4)^{2}$
235. [T] $f(x)=\frac{1}{1-x}, x \neq 1$
236. [T] $f(x)=\frac{\sin x}{x}$ over $x=[2 \pi, 0) \cup(0,2 \pi]$
237. $f(x)=\sin (x) e^{x}$ over $x=[-\pi, \pi]$
238. $f(x)=\ln x \sqrt{x}, x>0$
239. $f(x)=\frac{1}{4} \sqrt{x}+\frac{1}{x}, x>0$
240. $f(x)=\frac{e^{x}}{x}, x \neq 0$

For the following exercises, interpret the sentences in terms of f, f^{\prime}, and $f^{\prime \prime}$.
241. The population is growing more slowly. Here f is the population.
242. A bike accelerates faster, but a car goes faster. Here $f=$ Bike's position minus Car's position.
243. The airplane lands smoothly. Here f is the plane's altitude.
244. Stock prices are at their peak. Here f is the stock price.
245. The economy is picking up speed. Here f is a measure of the economy, such as GDP.

For the following exercises, consider a third-degree polynomial $f(x)$, which has the properties $f^{\prime}(1)=0, f^{\prime}(3)=0$. Determine whether the following statements are true or false. Justify your answer.
246. $f(x)=0$ for some $1 \leq x \leq 3$
247. $f^{\prime \prime}(x)=0$ for some $1 \leq x \leq 3$
248. There is no absolute maximum at $x=3$
249. If $f(x)$ has three roots, then it has 1 inflection point.
250. If $f(x)$ has one inflection point, then it has three real roots.

