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4.10 | Antiderivatives

Learning Objectives

4.10.1 Find the general antiderivative of a given function.

4.10.2 Explain the terms and notation used for an indefinite integral.
4.10.3 State the power rule for integrals.

4.10.4 Use antidifferentiation to solve simple initial-value problems.

At this point, we have seen how to calculate derivatives of many functions and have been introduced to a variety of their
applications. We now ask a question that turns this process around: Given a function f, how do we find a function with

the derivative f and why would we be interested in such a function?

We answer the first part of this question by defining antiderivatives. The antiderivative of a function f is a function with a
derivative f. Why are we interested in antiderivatives? The need for antiderivatives arises in many situations, and we look

at various examples throughout the remainder of the text. Here we examine one specific example that involves rectilinear
motion. In our examination in Derivatives of rectilinear motion, we showed that given a position function s(¢) of an

object, then its velocity function v(¢) is the derivative of s(f) —that is, v(¢) = s’ (f). Furthermore, the acceleration a(f)
is the derivative of the velocity v(¢) —that is, a(t) =v' () = s"(f). Now suppose we are given an acceleration function
a, but not the velocity function v or the position function s. Since a(f) =v'(#), determining the velocity function
requires us to find an antiderivative of the acceleration function. Then, since v(f) = s’(¢), determining the position

function requires us to find an antiderivative of the velocity function. Rectilinear motion is just one case in which the
need for antiderivatives arises. We will see many more examples throughout the remainder of the text. For now, let’s look
at the terminology and notation for antiderivatives, and determine the antiderivatives for several types of functions. We
examine various techniques for finding antiderivatives of more complicated functions later in the text (Introduction to
Techniques of Integration (http://cnx.org/content/m53654/latest/) ).

The Reverse of Differentiation

At this point, we know how to find derivatives of various functions. We now ask the opposite question. Given a function
f, how can we find a function with derivative f? If we can find a function F derivative f, we call F an antiderivative

of f.

Definition

A function F is an antiderivative of the function f if

F'(x) = f(x)

forall x in the domain of f.

Consider the function f(x) =2x. Knowing the power rule of differentiation, we conclude that F(x) = x% is an
antiderivative of f since F’(x) = 2x. Are there any other antiderivatives of f? Yes; since the derivative of any constant
C is zero, x% + C is also an antiderivative of 2x. Therefore, %245 and x%— 2 are also antiderivatives. Are there any

others that are not of the form x>+ C for some constant C? The answer is no. From Corollary 2 of the Mean Value
Theorem, we know that if F and G are differentiable functions such that F’(x) = G’ (x), then F(x) — G(x) = C for

some constant C. This fact leads to the following important theorem.
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Theorem 4.14: General Form of an Antiderivative

Let F be an antiderivative of f over an interval /. Then,
i. for each constant C, the function F(x)+ C is also an antiderivative of f over I;
ii. if G isan antiderivative of f over I, thereisa constant C for which G(x) = F(x) + C over .

In other words, the most general form of the antiderivative of f over I is F(x) + C.

We use this fact and our knowledge of derivatives to find all the antiderivatives for several functions.

Example 4.50

Finding Antiderivatives

For each of the following functions, find all antiderivatives.

a. f(x)=3x2
b =%
c. f(x)=cosx
d fx)=e*
Solution
a. Because
d
E(Jﬁ) = 3x2

then F(x) = x> is an antiderivative of 3x2. Therefore, every antiderivative of 3x2 is of the form

x> + C for some constant C, and every function of the form x> + C is an antiderivative of 3x2.

b. Let f(x) = Inlxl. For x > 0, f(x) = In(x) and
d%(lnx) =1
For x < 0, f(x) = In(=x) and
%(m(—x)) =-1 -1

Therefore,

d =1
dx(lnlxl) =5

Thus, F(x) =Inlx| is an antiderivative of % Therefore, every antiderivative of % is of the form
Inlx| + C for some constant C and every function of the form Inlx| + C is an antiderivative of %

c. We have
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d (i) =
dx(smx) = cosx,

so F(x) = sinx is an antiderivative of cosx. Therefore, every antiderivative of cosx is of the form

sinx + C for some constant C and every function of the form sinx + C is an antiderivative of cosx.
d. Since

d g x _ x
dx(e)_e’

then F(x) = e is an antiderivative of e”*. Therefore, every antiderivative of e”* is of the form e* + C

for some constant C and every function of the form e + C is an antiderivative of e™*.

@ 4.49 Find all antiderivatives of f(x) = sinux.

Indefinite Integrals

We now look at the formal notation used to represent antiderivatives and examine some of their properties. These properties

df

allow us to find antiderivatives of more complicated functions. Given a function f, we use the notation f’(x) or Ix

to denote the derivative of f. Here we introduce notation for antiderivatives. If F' is an antiderivative of f, we say that

F(x) + C is the most general antiderivative of f and write
[ fedx = Foy + €.

The symbol _/ is called an integral sign, and _/ f(x)dx is called the indefinite integral of f.

Definition

Given a function f, the indefinite integral of f, denoted

[,

is the most general antiderivative of f. If F is an antiderivative of f, then

[r@dx=Fe +c.

The expression f(x) is called the integrand and the variable x is the variable of integration.

Given the terminology introduced in this definition, the act of finding the antiderivatives of a function f is usually referred

to as integrating f.
For a function f and an antiderivative F, the functions F(x) + C, where C is any real number, is often referred to as
the family of antiderivatives of f. For example, since x? is an antiderivative of 2x and any antiderivative of 2x is of the

form xZ + C, we write
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f2xdx=x2+C.

The collection of all functions of the form x”+ C, where C is any real number, is known as the family of antiderivatives

of 2x. Figure 4.85 shows a graph of this family of antiderivatives.
1

Figure 4.85 The family of antiderivatives of 2x consists of all functions of the

form xZ+ C , where C is any real number.

For some functions, evaluating indefinite integrals follows directly from properties of derivatives. For example, for

n# -1,

/”d xn+1 c
* x_n+1+ ’

which comes directly from

i xn +1 _ xn _.n
dx(n+1 _(n+1)n+l_x'
This fact is known as the power rule for integrals.

Theorem 4.15: Power Rule for Integrals
For n # —1,

n _xn+1
/x dx—n+1+C.

Evaluating indefinite integrals for some other functions is also a straightforward calculation. The following table lists the
indefinite integrals for several common functions. A more complete list appears in Appendix B.
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Differentiation Formula

Indefinite Integral

d ) —
Ly =0

[kax = [kxPax = kx+C

diony_ n—1
dx(x)—nx

n+1
/x”dn:x + C for n# -1

n+1

a, =1
dx(lnlxl) *

/%dx =Inlx|+ C

d i x _ x
dx(e)—e

/exdx=ex+C

A (sinx) =
dx(smx) COSX

/cosxdx =sinx+ C

d_ = —gi
dx(cosx) sinx

/sinxdx = —cosx+ C

d_ = sec?
dx(tanx) sec”x

/seczxdx =tanx + C

d
< (cscx) = —cscxcotx
I eseX)

/cscxcotxdx =—cscx+C

d
——(secx) = secxtanx
dx( )

/secxtanxdx =secx+ C

d_ )
dx(cotx)— cscox

/csczxdx = —cotx+C

/ L __sin~'x+C

d_ -1.\y_ 1 1 _ -1

dx(tan x)— 2.2 f1+x2dx_tan x+C
isec_llxl =—1 édx= sec” v+ C
R e il I ey

Table 4.13 Integration Formulas

From the definition of indefinite integral of f, we know

[fedx=Fe + €
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if and only if F is an antiderivative of f. Therefore, when claiming that

[fdx = Fe + €

it is important to check whether this statement is correct by verifying that F’ (x) = f(x).

Example 4.51

Verifying an Indefinite Integral

Each of the following statements is of the form f f(x)dx = F(x) + C. Verify that each statement is correct by
showing that F” (x) = f(x).

2
a. f(x+ex)dx=x—+ex+C

2
b. xetdx =xe*—e*+C
Solution
a. Since
A2y =x+e”,
dx\ 2
the statement
X x2 X
/(x+e )dx=7+e +C
is correct.
2
Note that we are verifying an indefinite integral for a sum. Furthermore, % and e” are antiderivatives

of x and e¥, respectively, and the sum of the antiderivatives is an antiderivative of the sum. We discuss
this fact again later in this section.

b. Using the product rule, we see that

%(xex —e*+C)=e" + xe* —e* = xe”.

Therefore, the statement
/xexdx =xe*—e*+C

is correct.
Note that we are verifying an indefinite integral for a product. The antiderivative xe* —e” is not

a product of the antiderivatives. Furthermore, the product of antiderivatives, x%e*/2 is not an
antiderivative of xe* since

%(xzzex) — xe* 4 xzzex £ xe.

In general, the product of antiderivatives is not an antiderivative of a product.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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@ 4.50 Verify that fxcosxdx = xsinx + cosx + C.

In Table 4.13, we listed the indefinite integrals for many elementary functions. Let’s now turn our attention to evaluating
indefinite integrals for more complicated functions. For example, consider finding an antiderivative of a sum f + g.

2
In Example 4.51a. we showed that an antiderivative of the sum x + e¢* is given by the sum (x?) + ¢* —that is, an

antiderivative of a sum is given by a sum of antiderivatives. This result was not specific to this example. In general, if F
and G are antiderivatives of any functions f and g, respectively, then

%(F(X) +G(x) =F (0) + G (x) = f(x) + g).

Therefore, F(x)+ G(x) is an antiderivative of f(x) + g(x) and we have

J )+ gGokdx = F) + G + C.
Similarly,

[ ) - godx = F = Gy + C.
In addition, consider the task of finding an antiderivative of kf(x), where k is any real number. Since

ik f0) = kEF (0 = kf (0
for any real number k, we conclude that
[kf@dx = kF@) + C.

These properties are summarized next.

Theorem 4.16: Properties of Indefinite Integrals

Let F and G be antiderivatives of f and g, respectively, and let k be any real number.

Sums and Differences
J(F@2g(Mx = F+Gx) + €
Constant Multiples

[kf@dx = kF) + €

From this theorem, we can evaluate any integral involving a sum, difference, or constant multiple of functions with
antiderivatives that are known. Evaluating integrals involving products, quotients, or compositions is more complicated (see
Example 4.51b. for an example involving an antiderivative of a product.) We look at and address integrals involving these
more complicated functions in Introduction to Integration. In the next example, we examine how to use this theorem to
calculate the indefinite integrals of several functions.

Example 4.52

Evaluating Indefinite Integrals
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Evaluate each of the following indefinite integrals:

a. /(5x3 —Tx%+3x+ 4)dx

2 3
X7 4 4vx

c. fl sza’x

d. /tanxcosxdx

Solution
Using Properties of Indefinite Integrals, we can integrate each of the four terms in the integrand

a.
separately. We obtain

[(5x* =72 4 3x+ a)ax = [5xax— [1xPdx+ [3xdx+ [dax.

From the second part of Properties of Indefinite Integrals, each coefficient can be written in front of

the integral sign, which gives

/5x3dx—/7x2dx+/3xdx+/4dx=5/x3dx—7/x2dx+3/xdx+4/1dx.

Using the power rule for integrals, we conclude that
f(5x3 —7x2+3x+4)dx=%x4—%x3+%x2+4x+ C.

b. Rewrite the integrand as

NS}

2 3
X“+4vx _ x 4vx _
—x =5 +tx =0

Then, to evaluate the integral, integrate each of these terms separately. Using the power rule, we have

/(x+%)dx = /xdx+4fx_2/3dx

X
=124 1 2%, 0
E

= %xz +12x3 ¢ .

Using Properties of Indefinite Integrals, write the integral as

C.
1
4 dx.
/1 +x2

Then, use the fact that tan~! (x) is an antiderivative of (1 1 2) to conclude that
+x

[—2—dx=4tan™ 0 + C.
1+x

d. Rewrite the integrand as
_ sinx —
tanxcosx = £553rCosx = sinx.
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Therefore,

/tanxcosx = fsinx = —cosx+ C.

@ 4.51 Evaluate f(4x3 —5x% 4 x— 7)dx.

Initial-Value Problems

We look at techniques for integrating a large variety of functions involving products, quotients, and compositions later in
the text. Here we turn to one common use for antiderivatives that arises often in many applications: solving differential
equations.

A differential equation is an equation that relates an unknown function and one or more of its derivatives. The equation
d 4.9
F=rw “9)

is a simple example of a differential equation. Solving this equation means finding a function y with a derivative f.

Therefore, the solutions of Equation 4.9 are the antiderivatives of f. If F' is one antiderivative of f, every function of

the form y = F(x) + C is a solution of that differential equation. For example, the solutions of

dy .2
dx—6x

are given by
y= /6x2dx =27+ C.

Sometimes we are interested in determining whether a particular solution curve passes through a certain point (xq, y()

—that is, y(xg) = yo. The problem of finding a function y that satisfies a differential equation

dy _ (4.10)
= S

with the additional condition
y(xg) =¥ (4.11)

is an example of an initial-value problem. The condition y(x;) =y is known as an initial condition. For example,

looking for a function y that satisfies the differential equation

dy .2

dx ~ 6x
and the initial condition

y(1)=35

is an example of an initial-value problem. Since the solutions of the differential equation are y = 2x>+C, tofind a
function y that also satisfies the initial condition, we need to find C such that y(1) = 2(1)3 + C = 5. From this equation,

we see that C =3, and we conclude that y = 2x> +3 is the solution of this initial-value problem as shown in the

following graph.
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-4 -3 -2 2 3 4
Figure 4.86 Some of the solution curves of the differential equation % = 6x>

are displayed. The function y = 2x3 + 3 satisfies the differential equation and the

initial condition y(1) = 5.

Example 4.53

Solving an Initial-Value Problem

Solve the initial-value problem

dy _ _
7y = sinx, y(0) = 5.

Solution

First we need to solve the differential equation. If % = sinx, then

y= [sin(x)dx = —cosx + C.

Next we need to look for a solution y that satisfies the initial condition. The initial condition y(0) = 5 means

we need a constant C such that —cosx + C = 5. Therefore,
C =5+ cos(0) =6.

The solution of the initial-value problem is y = —cosx + 6.

@ 4.52 Solve the initial value problem % =3x72, y(1) = 2.

Initial-value problems arise in many applications. Next we consider a problem in which a driver applies the brakes in a car.
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We are interested in how long it takes for the car to stop. Recall that the velocity function v(#) is the derivative of a position
function s(¢), and the acceleration a(¢) is the derivative of the velocity function. In earlier examples in the text, we could

calculate the velocity from the position and then compute the acceleration from the velocity. In the next example we work
the other way around. Given an acceleration function, we calculate the velocity function. We then use the velocity function
to determine the position function.

Example 4.54

Decelerating Car

A car is traveling at the rate of 88 ft/sec (60 mph) when the brakes are applied. The car begins decelerating at a
constant rate of 15 ft/sec?.
a. How many seconds elapse before the car stops?

b. How far does the car travel during that time?

Solution
a. First we introduce variables for this problem. Let ¢ be the time (in seconds) after the brakes are first
applied. Let a(¢) be the acceleration of the car (in feet per seconds squared) at time ¢. Let v(¢) be the
velocity of the car (in feet per second) at time . Let s(¢) be the car’s position (in feet) beyond the point

where the brakes are applied at time .
The car is traveling at a rate of 88 ft/sec. Therefore, the initial velocity is v(0) = 88 ft/sec. Since the car

is decelerating, the acceleration is

a(t) = —15 ft/s>.

The acceleration is the derivative of the velocity,

V' () = —15.

Therefore, we have an initial-value problem to solve:
v (1) = —15, v(0) = 88.

Integrating, we find that
v(t) = —-15t+ C.

Since v(0) = 88, C = 88. Thus, the velocity function is

v(t) = —15¢ + 88.

To find how long it takes for the car to stop, we need to find the time ¢ such that the velocity is zero.

Solving —15¢+ 88 = 0, we obtain ¢ = % sec.

b. To find how far the car travels during this time, we need to find the position of the car after 88 gec. We

15
know the velocity v(¢) is the derivative of the position s(¢). Consider the initial position to be s(0) = 0.

Therefore, we need to solve the initial-value problem

s' (1) = =15t + 88, s(0) = 0.
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Integrating, we have

s(t) = — %lz + 887+ C.

Since s(0) =0, the constantis C = 0. Therefore, the position function is

s() = — %xz + 881

_ 88 oo e o 88Y o
After t = 15 sec, the position is S(IS) ~ 258.133 ft.

4.53 Suppose the car is traveling at the rate of 44 ft/sec. How long does it take for the car to stop? How far
will the car travel?
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