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CHAPTER 4 REVIEW

KEY TERMS
if f has an absolute maximum or absolute minimum at c, we say f has an absolute extremum

at c

if f (c) ≥ f (x) for all x in the domain of f , we say f has an absolute maximum at c

if f (c) ≤ f (x) for all x in the domain of f , we say f has an absolute minimum at c

a function F such that F′ (x) = f (x) for all x in the domain of f is an antiderivative of f

if f is differentiable over an interval I and f ′ is decreasing over I, then f is concave down over

I

if f is differentiable over an interval I and f ′ is increasing over I, then f is concave up over I

the upward or downward curve of the graph of a function

suppose f is twice differentiable over an interval I; if f ″ > 0 over I, then f is concave up over I;
if f ″ < 0 over I, then f is concave down over I

if f ′(c) = 0 or f ′(c) is undefined, we say that c is a critical point of f

the differential dx is an independent variable that can be assigned any nonzero real number; the differential

dy is defined to be dy = f ′(x)dx

given a differentiable function y = f ′(x), the equation dy = f ′(x)dx is the differential form of the

derivative of y with respect to x

the behavior of a function as x → ∞ and x → −∞

if f is a continuous function over a finite, closed interval, then f has an absolute maximum

and an absolute minimum

if f has a local extremum at c, then c is a critical point of f

let f be a continuous function over an interval I containing a critical point c such that f is

differentiable over I except possibly at c; if f ′ changes sign from positive to negative as x increases through c,
then f has a local maximum at c; if f ′ changes sign from negative to positive as x increases through c, then f
has a local minimum at c; if f ′ does not change sign as x increases through c, then f does not have a local

extremum at c

if limx → ∞ f (x) = L or limx → −∞ f (x) = L, then y = L is a horizontal asymptote of f

the most general antiderivative of f (x) is the indefinite integral of f ; we use the notation

∫ f (x)dx to denote the indefinite integral of f

when evaluating a limit, the forms 0
0, ∞/∞, 0 · ∞, ∞ − ∞, 00, ∞0, and 1∞ are

considered indeterminate because further analysis is required to determine whether the limit exists and, if so, what its
value is

a function that becomes arbitrarily large as x becomes large

if f is continuous at c and f changes concavity at c, the point ⎛⎝c, f (c)⎞⎠ is an inflection point of f
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initial value problem

iterative process

limit at infinity

linear approximation

local extremum

local maximum

local minimum

L’Hôpital’s rule

mean value theorem

Newton’s method

oblique asymptote

optimization problems

percentage error

propagated error

related rates

relative error

rolle’s theorem

second derivative test

tangent line approximation (linearization)

a problem that requires finding a function y that satisfies the differential equation
dy
dx = f (x)

together with the initial condition y(x0) = y0

process in which a list of numbers x0, x1, x2, x3 … is generated by starting with a number x0 and

defining xn = F(xn − 1) for n ≥ 1

the limiting value, if it exists, of a function as x → ∞ or x → −∞

the linear function L(x) = f (a) + f ′(a)(x − a) is the linear approximation of f at x = a

if f has a local maximum or local minimum at c, we say f has a local extremum at c

if there exists an interval I such that f (c) ≥ f (x) for all x ∈ I, we say f has a local maximum at

c

if there exists an interval I such that f (c) ≤ f (x) for all x ∈ I, we say f has a local minimum at c

if f and g are differentiable functions over an interval a, except possibly at a, and

limx → a f (x) = 0 = limx → ag(x) or limx → a f (x) and limx → ag(x) are infinite, then limx → a
f (x)
g(x) = limx → a

f ′ (x)
g′ (x) , assuming the

limit on the right exists or is ∞ or −∞

if f is continuous over [a, b] and differentiable over (a, b), then there exists c ∈ (a, b) such

that

f ′ (c) = f (b) − f (a)
b − a

method for approximating roots of f (x) = 0; using an initial guess x0; each subsequent

approximation is defined by the equation xn = xn − 1 − f (xn − 1)
f ′(xn − 1)

the line y = mx + b if f (x) approaches it as x → ∞ or x → −∞

problems that are solved by finding the maximum or minimum value of a function

the relative error expressed as a percentage

the error that results in a calculated quantity f (x) resulting from a measurement error dx

are rates of change associated with two or more related quantities that are changing over time

given an absolute error Δq for a particular quantity,
Δq
q is the relative error.

if f is continuous over [a, b] and differentiable over (a, b), and if f (a) = f (b), then there exists

c ∈ (a, b) such that f ′ (c) = 0

suppose f ′ (c) = 0 and f ″ is continuous over an interval containing c; if f ″(c) > 0, then

f has a local minimum at c; if f ″(c) < 0, then f has a local maximum at c; if f ″(c) = 0, then the test is

inconclusive

since the linear approximation of f at x = a is defined using the

equation of the tangent line, the linear approximation of f at x = a is also known as the tangent line approximation

to f at x = a

KEY EQUATIONS
• Linear approximation
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L(x) = f (a) + f ′(a)(x − a)

• A differential
dy = f ′(x)dx.

KEY CONCEPTS

4.1 Related Rates

• To solve a related rates problem, first draw a picture that illustrates the relationship between the two or more related
quantities that are changing with respect to time.

• In terms of the quantities, state the information given and the rate to be found.

• Find an equation relating the quantities.

• Use differentiation, applying the chain rule as necessary, to find an equation that relates the rates.

• Be sure not to substitute a variable quantity for one of the variables until after finding an equation relating the rates.

4.2 Linear Approximations and Differentials

• A differentiable function y = f (x) can be approximated at a by the linear function

L(x) = f (a) + f ′(a)(x − a).
• For a function y = f (x), if x changes from a to a + dx, then

dy = f ′(x)dx

is an approximation for the change in y. The actual change in y is

Δy = f (a + dx) − f (a).
• A measurement error dx can lead to an error in a calculated quantity f (x). The error in the calculated quantity is

known as the propagated error. The propagated error can be estimated by

dy ≈ f ′(x)dx.

• To estimate the relative error of a particular quantity q, we estimate
Δq
q .

4.3 Maxima and Minima

• A function may have both an absolute maximum and an absolute minimum, have just one absolute extremum, or
have no absolute maximum or absolute minimum.

• If a function has a local extremum, the point at which it occurs must be a critical point. However, a function need
not have a local extremum at a critical point.

• A continuous function over a closed, bounded interval has an absolute maximum and an absolute minimum. Each
extremum occurs at a critical point or an endpoint.

4.4 The Mean Value Theorem

• If f is continuous over [a, b] and differentiable over (a, b) and f (a) = 0 = f (b), then there exists a point

c ∈ (a, b) such that f ′ (c) = 0. This is Rolle’s theorem.

• If f is continuous over [a, b] and differentiable over (a, b), then there exists a point c ∈ (a, b) such that

f ′(c) = f (b) − f (a)
b − a .
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This is the Mean Value Theorem.

• If f ′(x) = 0 over an interval I, then f is constant over I.

• If two differentiable functions f and g satisfy f ′(x) = g′(x) over I, then f (x) = g(x) + C for some constant

C.

• If f ′ (x) > 0 over an interval I, then f is increasing over I. If f ′(x) < 0 over I, then f is decreasing over

I.

4.5 Derivatives and the Shape of a Graph

• If c is a critical point of f and f ′ (x) > 0 for x < c and f ′ (x) < 0 for x > c, then f has a local maximum at

c.

• If c is a critical point of f and f ′ (x) < 0 for x < c and f ′ (x) > 0 for x > c, then f has a local minimum at

c.

• If f ″(x) > 0 over an interval I, then f is concave up over I.

• If f ″(x) < 0 over an interval I, then f is concave down over I.

• If f ′ (c) = 0 and f ″(c) > 0, then f has a local minimum at c.

• If f ′ (c) = 0 and f ″(c) < 0, then f has a local maximum at c.

• If f ′ (c) = 0 and f ″(c) = 0, then evaluate f ′ (x) at a test point x to the left of c and a test point x to the right

of c, to determine whether f has a local extremum at c.

4.6 Limits at Infinity and Asymptotes

• The limit of f (x) is L as x → ∞ (or as x → −∞) if the values f (x) become arbitrarily close to L as x
becomes sufficiently large.

• The limit of f (x) is ∞ as x → ∞ if f (x) becomes arbitrarily large as x becomes sufficiently large. The limit

of f (x) is −∞ as x → ∞ if f (x) < 0 and | f (x)| becomes arbitrarily large as x becomes sufficiently large. We

can define the limit of f (x) as x approaches −∞ similarly.

• For a polynomial function p(x) = an xn + an − 1 x
n − 1 + … + a1 x + a0, where an ≠ 0, the end behavior is

determined by the leading term an xn. If n ≠ 0, p(x) approaches ∞ or −∞ at each end.

• For a rational function f (x) = p(x)
q(x) , the end behavior is determined by the relationship between the degree of p

and the degree of q. If the degree of p is less than the degree of q, the line y = 0 is a horizontal asymptote for

f . If the degree of p is equal to the degree of q, then the line y = an
bn

is a horizontal asymptote, where an and

bn are the leading coefficients of p and q, respectively. If the degree of p is greater than the degree of q, then

f approaches ∞ or −∞ at each end.

4.7 Applied Optimization Problems

• To solve an optimization problem, begin by drawing a picture and introducing variables.

• Find an equation relating the variables.

• Find a function of one variable to describe the quantity that is to be minimized or maximized.
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• Look for critical points to locate local extrema.

4.8 L’Hôpital’s Rule

• L’Hôpital’s rule can be used to evaluate the limit of a quotient when the indeterminate form 0
0 or ∞/∞ arises.

• L’Hôpital’s rule can also be applied to other indeterminate forms if they can be rewritten in terms of a limit involving

a quotient that has the indeterminate form 0
0 or ∞/∞.

• The exponential function ex grows faster than any power function x p, p > 0.

• The logarithmic function lnx grows more slowly than any power function x p, p > 0.

4.9 Newton’s Method

• Newton’s method approximates roots of f (x) = 0 by starting with an initial approximation x0, then uses tangent

lines to the graph of f to create a sequence of approximations x1, x2, x3 ,….

• Typically, Newton’s method is an efficient method for finding a particular root. In certain cases, Newton’s method
fails to work because the list of numbers x0, x1, x2 ,… does not approach a finite value or it approaches a value

other than the root sought.

• Any process in which a list of numbers x0, x1, x2 ,… is generated by defining an initial number x0 and defining

the subsequent numbers by the equation xn = F(xn − 1) for some function F is an iterative process. Newton’s

method is an example of an iterative process, where the function F(x) = x − ⎡⎣ f (x)
f ′ (x)
⎤
⎦ for a given function f .

4.10 Antiderivatives

• If F is an antiderivative of f , then every antiderivative of f is of the form F(x) + C for some constant C.

• Solving the initial-value problem

dy
dx = f (x), y(x0) = y0

requires us first to find the set of antiderivatives of f and then to look for the particular antiderivative that also

satisfies the initial condition.

CHAPTER 4 REVIEW EXERCISES
True or False? Justify your answer with a proof or a
counterexample. Assume that f (x) is continuous and

differentiable unless stated otherwise.

525. If f (−1) = −6 and f (1) = 2, then there exists at

least one point x ∈ [−1, 1] such that f ′ (x) = 4.

526. If f ′ (c) = 0, there is a maximum or minimum at

x = c.

527. There is a function such that f (x) < 0, f ′ (x) > 0,
and f ″(x) < 0. (A graphical “proof” is acceptable for this

answer.)

528. There is a function such that there is both an
inflection point and a critical point for some value x = a.
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529. Given the graph of f ′, determine where f is

increasing or decreasing.

530. The graph of f is given below. Draw f ′.

531. Find the linear approximation L(x) to

y = x2 + tan(πx) near x = 1
4.

532. Find the differential of y = x2 − 5x − 6 and

evaluate for x = 2 with dx = 0.1.

Find the critical points and the local and absolute extrema
of the following functions on the given interval.

533. f (x) = x + sin2 (x) over [0, π]

534. f (x) = 3x4 − 4x3 − 12x2 + 6 over [−3, 3]

Determine over which intervals the following functions are
increasing, decreasing, concave up, and concave down.

535. x(t) = 3t4 − 8t3 − 18t2

536. y = x + sin(πx)

537. g(x) = x − x

538. f (θ) = sin(3θ)

Evaluate the following limits.

539. limx → ∞
3x x2 + 1

x4 − 1

540. limx → ∞cos⎛⎝1x
⎞
⎠

541. lim
x → 1

x − 1
sin(πx)

542. limx → ∞(3x)1/x

Use Newton’s method to find the first two iterations, given
the starting point.

543. y = x3 + 1, x0 = 0.5

544. 1
x + 1 = 1

2, x0 = 0

Find the antiderivatives F(x) of the following functions.

545. g(x) = x − 1
x2

546. f (x) = 2x + 6cosx, F(π) = π2 + 2

Graph the following functions by hand. Make sure to label
the inflection points, critical points, zeros, and asymptotes.

547. y = 1
x(x + 1)2

548. y = x − 4 − x2

549. A car is being compacted into a rectangular solid.
The volume is decreasing at a rate of 2 m3/sec. The length

and width of the compactor are square, but the height is not
the same length as the length and width. If the length and
width walls move toward each other at a rate of 0.25 m/

sec, find the rate at which the height is changing when the
length and width are 2 m and the height is 1.5 m.
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550. A rocket is launched into space; its kinetic energy

is given by K(t) = ⎛⎝12
⎞
⎠m(t)v(t)2, where K is the kinetic

energy in joules, m is the mass of the rocket in kilograms,

and v is the velocity of the rocket in meters/second.

Assume the velocity is increasing at a rate of 15 m/sec2

and the mass is decreasing at a rate of 10 kg/sec because

the fuel is being burned. At what rate is the rocket’s kinetic
energy changing when the mass is 2000 kg and the

velocity is 5000 m/sec? Give your answer in mega-Joules

(MJ), which is equivalent to 106 J.

551. The famous Regiomontanus’ problem for angle
maximization was proposed during the 15 th century. A

painting hangs on a wall with the bottom of the painting a
distance a feet above eye level, and the top b feet above

eye level. What distance x (in feet) from the wall should

the viewer stand to maximize the angle subtended by the
painting, θ?

552. An airline sells tickets from Tokyo to Detroit for
$1200. There are 500 seats available and a typical flight

books 350 seats. For every $10 decrease in price, the

airline observes an additional five seats sold. What should
the fare be to maximize profit? How many passengers
would be onboard?
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