3.3 EXERCISES

For the following exercises, find $f^{\prime}(x)$ for each function.
106. $f(x)=x^{7}+10$
107. $f(x)=5 x^{3}-x+1$
108. $f(x)=4 x^{2}-7 x$
109. $f(x)=8 x^{4}+9 x^{2}-1$
110. $f(x)=x^{4}+\frac{2}{x}$
111. $f(x)=3 x\left(18 x^{4}+\frac{13}{x+1}\right)$
112. $f(x)=(x+2)\left(2 x^{2}-3\right)$
113. $f(x)=x^{2}\left(\frac{2}{x^{2}}+\frac{5}{x^{3}}\right)$
114. $f(x)=\frac{x^{3}+2 x^{2}-4}{3}$
115. $f(x)=\frac{4 x^{3}-2 x+1}{x^{2}}$
116. $f(x)=\frac{x^{2}+4}{x^{2}-4}$
117. $f(x)=\frac{x+9}{x^{2}-7 x+1}$

For the following exercises, find the equation of the tangent line $T(x)$ to the graph of the given function at the indicated point. Use a graphing calculator to graph the function and the tangent line.
118. [T] $y=3 x^{2}+4 x+1$ at $(0,1)$
119. [T] $y=2 \sqrt{x}+1$ at $(4,5)$
120. [T] $y=\frac{2 x}{x-1}$ at $(-1,1)$
121. [T] $y=\frac{2}{x}-\frac{3}{x^{2}}$ at $(1,-1)$

For the following exercises, assume that $f(x)$ and $g(x)$ are both differentiable functions for all x. Find the derivative of each of the functions $h(x)$.
122. $h(x)=4 f(x)+\frac{g(x)}{7}$
123. $h(x)=x^{3} f(x)$
124. $h(x)=\frac{f(x) g(x)}{2}$
125. $h(x)=\frac{3 f(x)}{g(x)+2}$

For the following exercises, assume that $f(x)$ and $g(x)$ are both differentiable functions with values as given in the following table. Use the following table to calculate the following derivatives.

\boldsymbol{x}	1	2	3	4
$\boldsymbol{f}(\boldsymbol{x})$	3	5	-2	0
$\boldsymbol{g}(\boldsymbol{x})$	2	3	-4	6
$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	-1	7	8	-3
$\boldsymbol{g}^{\prime}(\boldsymbol{x})$	4	1	2	9

126. Find $h^{\prime}(1)$ if $h(x)=x f(x)+4 g(x)$.
127. Find $h^{\prime}(2)$ if $h(x)=\frac{f(x)}{g(x)}$.
128. Find $h^{\prime}(3)$ if $h(x)=2 x+f(x) g(x)$.
129. Find $h^{\prime}(4)$ if $h(x)=\frac{1}{x}+\frac{g(x)}{f(x)}$.

For the following exercises, use the following figure to find the indicated derivatives, if they exist.

130. Let $h(x)=f(x)+g(x)$. Find
a. $h^{\prime}(1)$,
b. $\quad h^{\prime}(3)$, and
c. $h^{\prime}(4)$.
131. Let $h(x)=f(x) g(x)$. Find
a. $h^{\prime}(1)$,
b. $h^{\prime}(3)$, and
c. $h^{\prime}(4)$.
132. Let $h(x)=\frac{f(x)}{g(x)}$. Find
a. $h^{\prime}(1)$,
b. $\quad h^{\prime}(3)$, and
c. $h^{\prime}(4)$.

For the following exercises,
a. evaluate $f^{\prime}(a)$, and
b. graph the function $f(x)$ and the tangent line at $x=a$.
133. [T] $f(x)=2 x^{3}+3 x-x^{2}, a=2$
134. [T] $f(x)=\frac{1}{x}-x^{2}, a=1$
135. [T] $f(x)=x^{2}-x^{12}+3 x+2, a=0$
136. [T] $f(x)=\frac{1}{x}-x^{2 / 3}, a=-1$
137. Find the equation of the tangent line to the graph of $f(x)=2 x^{3}+4 x^{2}-5 x-3$ at $x=-1$.
138. Find the equation of the tangent line to the graph of $f(x)=x^{2}+\frac{4}{x}-10$ at $x=8$.
139. Find the equation of the tangent line to the graph of $f(x)=\left(3 x-x^{2}\right)\left(3-x-x^{2}\right)$ at $x=1$.
140. Find the point on the graph of $f(x)=x^{3}$ such that the tangent line at that point has an x intercept of 6 .
141. Find the equation of the line passing through the point $P(3,3)$ and tangent to the graph of $f(x)=\frac{6}{x-1}$.
142. Determine all points on the graph of $f(x)=x^{3}+x^{2}-x-1$ for which
a. the tangent line is horizontal
b. the tangent line has a slope of -1 .
143. Find a quadratic polynomial such that $f(1)=5, f^{\prime}(1)=3$ and $f^{\prime \prime}(1)=-6$.
144. A car driving along a freeway with traffic has traveled $s(t)=t^{3}-6 t^{2}+9 t$ meters in t seconds.
a. Determine the time in seconds when the velocity of the car is 0 .
b. Determine the acceleration of the car when the velocity is 0 .
145. [T] A herring swimming along a straight line has traveled $s(t)=\frac{t^{2}}{t^{2}+2}$ feet in t seconds. Determine the velocity of the herring when it has traveled 3 seconds.
146. The population in millions of arctic flounder in the Atlantic Ocean is modeled by the function $P(t)=\frac{8 t+3}{0.2 t^{2}+1}$, where t is measured in years.
a. Determine the initial flounder population.
b. Determine $P^{\prime}(10)$ and briefly interpret the result.
147. [T] The concentration of antibiotic in the bloodstream t hours after being injected is given by the function $C(t)=\frac{2 t^{2}+t}{t^{3}+50}$, where C is measured in milligrams per liter of blood.
a. Find the rate of change of $C(t)$.
b. Determine the rate of change for $t=8,12,24$, and 36.
c. Briefly describe what seems to be occurring as the number of hours increases.
148. A book publisher has a cost function given by $C(x)=\frac{x^{3}+2 x+3}{x^{2}}$, where x is the number of copies of a book in thousands and C is the cost, per book, measured in dollars. Evaluate $C^{\prime}(2)$ and explain its meaning.
149. [T] According to Newton's law of universal gravitation, the force F between two bodies of constant mass m_{1} and m_{2} is given by the formula $F=\frac{G m_{1} m_{2}}{d^{2}}$,
where G is the gravitational constant and d is the distance between the bodies.
a. Suppose that G, m_{1}, and m_{2} are constants. Find the rate of change of force F with respect to distance d.
b. Find the rate of change of force F with gravitational constant $\quad G=6.67 \times 10^{-11}$ $\mathrm{Nm}^{2} / \mathrm{kg}^{2}$, on two bodies 10 meters apart, each with a mass of 1000 kilograms.

