3.5 EXERCISES

For the following exercises, find $\frac{d y}{d x}$ for the given functions.
175. $y=x^{2}-\sec x+1$
176. $y=3 \csc x+\frac{5}{x}$
177. $y=x^{2} \cot x$
178. $y=x-x^{3} \sin x$
179. $y=\frac{\sec x}{x}$
180. $y=\sin x \tan x$
181. $y=(x+\cos x)(1-\sin x)$
182. $y=\frac{\tan x}{1-\sec x}$
183. $y=\frac{1-\cot x}{1+\cot x}$
184. $y=\cos x(1+\csc x)$

For the following exercises, find the equation of the tangent line to each of the given functions at the indicated values of x. Then use a calculator to graph both the function and the tangent line to ensure the equation for the tangent line is correct.
185. [T] $f(x)=-\sin x, x=0$
186. [T] $f(x)=\csc x, x=\frac{\pi}{2}$
187. [T] $f(x)=1+\cos x, x=\frac{3 \pi}{2}$
188. [T] $f(x)=\sec x, x=\frac{\pi}{4}$
189. [T] $f(x)=x^{2}-\tan x, x=0$
190. [T] $f(x)=5 \cot x, x=\frac{\pi}{4}$

For the following exercises, find $\frac{d^{2} y}{d x^{2}}$ for the given functions.
191. $y=x \sin x-\cos x$
192. $y=\sin x \cos x$
193. $y=x-\frac{1}{2} \sin x$
194. $y=\frac{1}{x}+\tan x$
195. $y=2 \csc x$
196. $y=\sec ^{2} x$
197. Find all x values on the graph of $f(x)=-3 \sin x \cos x$ where the tangent line is horizontal.
198. Find all x values on the graph of $f(x)=x-2 \cos x$ for $0<x<2 \pi$ where the tangent line has slope 2 .
199. Let $f(x)=\cot x$. Determine the points on the graph of f for $0<x<2 \pi$ where the tangent line(s) is (are) parallel to the line $y=-2 x$.
200. [T] A mass on a spring bounces up and down in simple harmonic motion, modeled by the function $s(t)=-6 \cos t$ where s is measured in inches and t is measured in seconds. Find the rate at which the spring is oscillating at $t=5 \mathrm{~s}$.
201. Let the position of a swinging pendulum in simple harmonic motion be given by $s(t)=a \cos t+b \sin t$ where a and b are constants, t measures time in seconds, and s measures position in centimeters. If the position is 0 cm and the velocity is $3 \mathrm{~cm} / \mathrm{s}$ when $t=0$, find the values of a and b.
202. After a diver jumps off a diving board, the edge of the board oscillates with position given by $s(t)=-5 \cos t$ cm at t seconds after the jump.
a. Sketch one period of the position function for $t \geq 0$.
b. Find the velocity function.
c. Sketch one period of the velocity function for $t \geq 0$.
d. Determine the times when the velocity is 0 over one period.
e. Find the acceleration function.
f. Sketch one period of the acceleration function for $t \geq 0$.
203. The number of hamburgers sold at a fast-food restaurant in Pasadena, California, is given by $y=10+5 \sin x$ where y is the number of hamburgers sold and x represents the number of hours after the restaurant opened at 11 a.m. until 11 p.m., when the store closes. Find y^{\prime} and determine the intervals where the number of burgers being sold is increasing.
204. [T] The amount of rainfall per month in Phoenix, Arizona, can be approximated by $y(t)=0.5+0.3 \cos t$,
where t is months since January. Find y^{\prime} and use a calculator to determine the intervals where the amount of rain falling is decreasing.

For the following exercises, use the quotient rule to derive the given equations.
205. $\frac{d}{d x}(\cot x)=-\csc ^{2} x$
206. $\frac{d}{d x}(\sec x)=\sec x \tan x$
207. $\frac{d}{d x}(\csc x)=-\csc x \cot x$
208. Use the definition of derivative and the identity $\cos (x+h)=\cos x \cos h-\sin x \sin h$ to prove that $\frac{d(\cos x)}{d x}=-\sin x$.

For the following exercises, find the requested higher-order derivative for the given functions.
209. $\frac{d^{3} y}{d x^{3}}$ of $y=3 \cos x$
210. $\frac{d^{2} y}{d x^{2}}$ of $y=3 \sin x+x^{2} \cos x$
211. $\frac{d^{4} y}{d x^{4}}$ of $y=5 \cos x$
212. $\frac{d^{2} y}{d x^{2}}$ of $y=\sec x+\cot x$
213. $\frac{d^{3} y}{d x^{3}}$ of $y=x^{10}-\sec x$

