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Figure 3.1 The Hennessey Venom GT can go from 0 to 200 mph in 14.51 seconds. (credit: modification of work by Codex41,
Flickr)
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Introduction
The Hennessey Venom GT is one of the fastest cars in the world. In 2014, it reached a record-setting speed of 270.49 mph.
It can go from 0 to 200 mph in 14.51 seconds. The techniques in this chapter can be used to calculate the acceleration the
Venom achieves in this feat (see Example 3.8.)

Calculating velocity and changes in velocity are important uses of calculus, but it is far more widespread than that. Calculus
is important in all branches of mathematics, science, and engineering, and it is critical to analysis in business and health as
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well. In this chapter, we explore one of the main tools of calculus, the derivative, and show convenient ways to calculate
derivatives. We apply these rules to a variety of functions in this chapter so that we can then explore applications of these
techniques.

3.1 | Defining the Derivative

Learning Objectives
3.1.1 Recognize the meaning of the tangent to a curve at a point.

3.1.2 Calculate the slope of a tangent line.

3.1.3 Identify the derivative as the limit of a difference quotient.

3.1.4 Calculate the derivative of a given function at a point.

3.1.5 Describe the velocity as a rate of change.

3.1.6 Explain the difference between average velocity and instantaneous velocity.

3.1.7 Estimate the derivative from a table of values.

Now that we have both a conceptual understanding of a limit and the practical ability to compute limits, we have established
the foundation for our study of calculus, the branch of mathematics in which we compute derivatives and integrals.
Most mathematicians and historians agree that calculus was developed independently by the Englishman Isaac Newton
(1643–1727) and the German Gottfried Leibniz (1646–1716), whose images appear in Figure 3.2. When we credit

Newton and Leibniz with developing calculus, we are really referring to the fact that Newton and Leibniz were the first
to understand the relationship between the derivative and the integral. Both mathematicians benefited from the work of
predecessors, such as Barrow, Fermat, and Cavalieri. The initial relationship between the two mathematicians appears to
have been amicable; however, in later years a bitter controversy erupted over whose work took precedence. Although it
seems likely that Newton did, indeed, arrive at the ideas behind calculus first, we are indebted to Leibniz for the notation
that we commonly use today.

Figure 3.2 Newton and Leibniz are credited with developing calculus independently.
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Tangent Lines
We begin our study of calculus by revisiting the notion of secant lines and tangent lines. Recall that we used the slope of
a secant line to a function at a point (a, f (a)) to estimate the rate of change, or the rate at which one variable changes in

relation to another variable. We can obtain the slope of the secant by choosing a value of x near a and drawing a line

through the points (a, f (a)) and ⎛
⎝x, f (x)⎞⎠, as shown in Figure 3.3. The slope of this line is given by an equation in the

form of a difference quotient:

msec = f (x) − f (a)
x − a .

We can also calculate the slope of a secant line to a function at a value a by using this equation and replacing x with

a + h, where h is a value close to 0. We can then calculate the slope of the line through the points (a, f (a)) and

(a + h, f (a + h)). In this case, we find the secant line has a slope given by the following difference quotient with

increment h:

msec = f (a + h) − f (a)
a + h − a = f (a + h) − f (a)

h .

Definition

Let f be a function defined on an interval I containing a. If x ≠ a is in I, then

(3.1)Q = f (x) − f (a)
x − a

is a difference quotient.

Also, if h ≠ 0 is chosen so that a + h is in I, then

(3.2)Q = f (a + h) − f (a)
h

is a difference quotient with increment h.

View the development of the derivative (http://www.openstax.org/l/20_calcapplets) with this applet.

These two expressions for calculating the slope of a secant line are illustrated in Figure 3.3. We will see that each of these
two methods for finding the slope of a secant line is of value. Depending on the setting, we can choose one or the other. The
primary consideration in our choice usually depends on ease of calculation.
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Figure 3.3 We can calculate the slope of a secant line in either of two ways.

In Figure 3.4(a) we see that, as the values of x approach a, the slopes of the secant lines provide better estimates of the

rate of change of the function at a. Furthermore, the secant lines themselves approach the tangent line to the function at

a, which represents the limit of the secant lines. Similarly, Figure 3.4(b) shows that as the values of h get closer to 0,
the secant lines also approach the tangent line. The slope of the tangent line at a is the rate of change of the function at a,
as shown in Figure 3.4(c).

Figure 3.4 The secant lines approach the tangent line (shown in green) as the second point approaches the first.

You can use this site (http://www.openstax.org/l/20_diffmicros) to explore graphs to see if they have a
tangent line at a point.

In Figure 3.5 we show the graph of f (x) = x and its tangent line at (1, 1) in a series of tighter intervals about x = 1.
As the intervals become narrower, the graph of the function and its tangent line appear to coincide, making the values on
the tangent line a good approximation to the values of the function for choices of x close to 1. In fact, the graph of f (x)
itself appears to be locally linear in the immediate vicinity of x = 1.
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Figure 3.5 For values of x close to 1, the graph of f (x) = x and its tangent line appear to coincide.

Formally we may define the tangent line to the graph of a function as follows.

Definition

Let f (x) be a function defined in an open interval containing a. The tangent line to f (x) at a is the line passing

through the point ⎛⎝a, f (a)⎞⎠ having slope

(3.3)mtan = limx → a
f (x) − f (a)

x − a

provided this limit exists.

Equivalently, we may define the tangent line to f (x) at a to be the line passing through the point ⎛⎝a, f (a)⎞⎠ having

slope

(3.4)mtan = lim
h → 0

f (a + h) − f (a)
h

provided this limit exists.

Just as we have used two different expressions to define the slope of a secant line, we use two different forms to define the
slope of the tangent line. In this text we use both forms of the definition. As before, the choice of definition will depend
on the setting. Now that we have formally defined a tangent line to a function at a point, we can use this definition to find
equations of tangent lines.
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Example 3.1

Finding a Tangent Line

Find the equation of the line tangent to the graph of f (x) = x2 at x = 3.

Solution

First find the slope of the tangent line. In this example, use Equation 3.3.

mtan = lim
x → 3

f (x) − f (3)
x − 3 Apply the definition.

= lim
x → 3

x2 − 9
x − 3 Substitute f (x) = x2 and f (3) = 9.

= lim
x → 3

(x − 3)(x + 3)
x − 3 = lim

x → 3
(x + 3) = 6 Factor the numerator to evaluate the limit.

Next, find a point on the tangent line. Since the line is tangent to the graph of f (x) at x = 3, it passes through

the point ⎛⎝3, f (3)⎞⎠. We have f (3) = 9, so the tangent line passes through the point (3, 9).

Using the point-slope equation of the line with the slope m = 6 and the point (3, 9), we obtain the line

y − 9 = 6(x − 3). Simplifying, we have y = 6x − 9. The graph of f (x) = x2 and its tangent line at 3 are

shown in Figure 3.6.

Figure 3.6 The tangent line to f (x) at x = 3.

Example 3.2

The Slope of a Tangent Line Revisited

Use Equation 3.4 to find the slope of the line tangent to the graph of f (x) = x2 at x = 3.

Solution

The steps are very similar to Example 3.1. See Equation 3.4 for the definition.
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mtan = lim
h → 0

f (3 + h) − f (3)
h Apply the definition.

= lim
h → 0

(3 + h)2 − 9
h Substitute f (3 + h) = (3 + h)2 and f (3) = 9.

= lim
h → 0

9 + 6h + h2 − 9
h Expand and simplify to evaluate the limit.

= lim
h → 0

h(6 + h)
h = lim

h → 0
(6 + h) = 6

We obtained the same value for the slope of the tangent line by using the other definition, demonstrating that the
formulas can be interchanged.

Example 3.3

Finding the Equation of a Tangent Line

Find the equation of the line tangent to the graph of f (x) = 1/x at x = 2.

Solution

We can use Equation 3.3, but as we have seen, the results are the same if we use Equation 3.4.

mtan = lim
x → 2

f (x) − f (2)
x − 2 Apply the definition.

= lim
x → 2

1
x − 1

2
x − 2 Substitute f (x) = 1

x and f (2) = 1
2.

= lim
x → 2

1
x − 1

2
x − 2 · 2x

2x
Multiply numerator and denominator by 2x to
simplify fractions.

= lim
x → 2

(2 − x)
(x − 2)(2x) Simplify.

= lim
x → 2

−1
2x Simplify using 2 − x

x − 2 = −1, for x ≠ 2.

= − 1
4 Evaluate the limit.

We now know that the slope of the tangent line is −1
4. To find the equation of the tangent line, we also need a

point on the line. We know that f (2) = 1
2. Since the tangent line passes through the point (2, 1

2) we can use

the point-slope equation of a line to find the equation of the tangent line. Thus the tangent line has the equation

y = − 1
4x + 1. The graphs of f (x) = 1

x and y = − 1
4x + 1 are shown in Figure 3.7.
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3.1

Figure 3.7 The line is tangent to f (x) at x = 2.

Find the slope of the line tangent to the graph of f (x) = x at x = 4.

The Derivative of a Function at a Point
The type of limit we compute in order to find the slope of the line tangent to a function at a point occurs in many applications
across many disciplines. These applications include velocity and acceleration in physics, marginal profit functions in
business, and growth rates in biology. This limit occurs so frequently that we give this value a special name: the derivative.
The process of finding a derivative is called differentiation.

Definition

Let f (x) be a function defined in an open interval containing a. The derivative of the function f (x) at a, denoted

by f ′ (a), is defined by

(3.5)f ′ (a) = limx → a
f (x) − f (a)

x − a

provided this limit exists.

Alternatively, we may also define the derivative of f (x) at a as

(3.6)f ′ (a) = lim
h → 0

f (a + h) − f (a)
h .

Example 3.4

Estimating a Derivative

For f (x) = x2, use a table to estimate f ′(3) using Equation 3.5.

Solution
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3.2

Create a table using values of x just below 3 and just above 3.

x x2−9
x−3

2.9 5.9

2.99 5.99

2.999 5.999

3.001 6.001

3.01 6.01

3.1 6.1

After examining the table, we see that a good estimate is f ′ (3) = 6.

For f (x) = x2, use a table to estimate f ′(3) using Equation 3.6.

Example 3.5

Finding a Derivative

For f (x) = 3x2 − 4x + 1, find f ′(2) by using Equation 3.5.

Solution

Substitute the given function and value directly into the equation.

f ′ (x) = lim
x → 2

f (x) − f (2)
x − 2 Apply the definition.

= lim
x → 2

⎛
⎝3x2 − 4x + 1⎞⎠− 5

x − 2 Substitute f (x) = 3x2 − 4x + 1 and f (2) = 5.

= lim
x → 2

(x − 2)(3x + 2)
x − 2 Simplify and factor the numerator.

= lim
x → 2

(3x + 2) Cancel the common factor.

= 8 Evaluate the limit.

Chapter 3 | Derivatives 221



3.3

Example 3.6

Revisiting the Derivative

For f (x) = 3x2 − 4x + 1, find f ′(2) by using Equation 3.6.

Solution

Using this equation, we can substitute two values of the function into the equation, and we should get the same
value as in Example 3.5.

f ′ (2) = lim
h → 0

f (2 + h) − f (2)
h Apply the definition.

= lim
h → 0

(3(2 + h)2 − 4(2 + h) + 1) − 5
h

Substitute f (2) = 5 and

f (2 + h) = 3(2 + h)2 − 4(2 + h) + 1.

= lim
h → 0

3h2 + 8h
h Simplify the numerator.

= lim
h → 0

h(3h + 8)
h Factor the numerator.

= lim
h → 0

(3h + 8) Cancel the common factor.

= 8 Evaluate the limit.

The results are the same whether we use Equation 3.5 or Equation 3.6.

For f (x) = x2 + 3x + 2, find f ′ (1).

Velocities and Rates of Change
Now that we can evaluate a derivative, we can use it in velocity applications. Recall that if s(t) is the position of an object

moving along a coordinate axis, the average velocity of the object over a time interval [a, t] if t > a or [t, a] if t < a is

given by the difference quotient

(3.7)vave = s(t) − s(a)
t − a .

As the values of t approach a, the values of vave approach the value we call the instantaneous velocity at a. That is,

instantaneous velocity at a, denoted v(a), is given by

(3.8)v(a) = s′ (a) = lim
t → a

s(t) − s(a)
t − a .

To better understand the relationship between average velocity and instantaneous velocity, see Figure 3.8. In this figure,
the slope of the tangent line (shown in red) is the instantaneous velocity of the object at time t = a whose position at time

t is given by the function s(t). The slope of the secant line (shown in green) is the average velocity of the object over the

time interval [a, t].
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Figure 3.8 The slope of the secant line is the average velocity
over the interval [a, t]. The slope of the tangent line is the

instantaneous velocity.

We can use Equation 3.5 to calculate the instantaneous velocity, or we can estimate the velocity of a moving object by
using a table of values. We can then confirm the estimate by using Equation 3.7.

Example 3.7

Estimating Velocity

A lead weight on a spring is oscillating up and down. Its position at time t with respect to a fixed horizontal

line is given by s(t) = sin t (Figure 3.9). Use a table of values to estimate v(0). Check the estimate by using

Equation 3.5.

Figure 3.9 A lead weight suspended from a spring in vertical
oscillatory motion.

Solution

We can estimate the instantaneous velocity at t = 0 by computing a table of average velocities using values of t
approaching 0, as shown in Table 3.1.
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3.4

t sint −sin0
t −0 = sint

t

−0.1 0.998334166

−0.01 0.9999833333

−0.001 0.999999833

0.001 0.999999833

0.01 0.9999833333

0.1 0.998334166

Table 3.1
Average velocities using values of t
approaching 0

From the table we see that the average velocity over the time interval [−0.1, 0] is 0.998334166, the average

velocity over the time interval [−0.01, 0] is 0.9999833333, and so forth. Using this table of values, it appears

that a good estimate is v(0) = 1.

By using Equation 3.5, we can see that

v(0) = s′ (0) = lim
t → 0

sin t − sin0
t − 0 = lim

t → 0
sin t
t = 1.

Thus, in fact, v(0) = 1.

A rock is dropped from a height of 64 feet. Its height above ground at time t seconds later is given by

s(t) = −16t2 + 64, 0 ≤ t ≤ 2. Find its instantaneous velocity 1 second after it is dropped, using Equation

3.5.

As we have seen throughout this section, the slope of a tangent line to a function and instantaneous velocity are related
concepts. Each is calculated by computing a derivative and each measures the instantaneous rate of change of a function, or
the rate of change of a function at any point along the function.

Definition

The instantaneous rate of change of a function f (x) at a value a is its derivative f ′(a).
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Example 3.8

Chapter Opener: Estimating Rate of Change of Velocity

Figure 3.10 (credit: modification of work by Codex41,
Flickr)

Reaching a top speed of 270.49 mph, the Hennessey Venom GT is one of the fastest cars in the world. In tests it

went from 0 to 60 mph in 3.05 seconds, from 0 to 100 mph in 5.88 seconds, from 0 to 200 mph in 14.51
seconds, and from 0 to 229.9 mph in 19.96 seconds. Use this data to draw a conclusion about the rate of change

of velocity (that is, its acceleration) as it approaches 229.9 mph. Does the rate at which the car is accelerating

appear to be increasing, decreasing, or constant?

Solution

First observe that 60 mph = 88 ft/s, 100 mph ≈ 146.67 ft/s, 200 mph ≈ 293.33 ft/s, and 229.9 mph

≈ 337.19 ft/s. We can summarize the information in a table.

t v(t)

0 0

3.05 88

5.88 147.67

14.51 293.33

19.96 337.19

Table 3.2
v(t) at different values

of t

Now compute the average acceleration of the car in feet per second per second on intervals of the form ⎡
⎣t, 19.96⎤⎦

as t approaches 19.96, as shown in the following table.
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t v(t) − v(19.96)
t −19.96 = v(t) −337.19

t −19.96

0.0 16.89

3.05 14.74

5.88 13.46

14.51 8.05

Table 3.3
Average acceleration

The rate at which the car is accelerating is decreasing as its velocity approaches 229.9 mph (337.19 ft/s).

Example 3.9

Rate of Change of Temperature

A homeowner sets the thermostat so that the temperature in the house begins to drop from 70°F at 9 p.m.,

reaches a low of 60° during the night, and rises back to 70° by 7 a.m. the next morning. Suppose that the

temperature in the house is given by T(t) = 0.4t2 − 4t + 70 for 0 ≤ t ≤ 10, where t is the number of hours

past 9 p.m. Find the instantaneous rate of change of the temperature at midnight.

Solution

Since midnight is 3 hours past 9 p.m., we want to compute T′(3). Refer to Equation 3.5.

T′ (3) = lim
t → 3

T(t) − T(3)
t − 3 Apply the definition.

= lim
t → 3

0.4t2 − 4t + 70 − 61.6
t − 3

Substitute T(t) = 0.4t2 − 4t + 70 and
T(3) = 61.6.

= lim
t → 3

0.4t2 − 4t + 8.4
t − 3 Simplify.

= lim
t → 3

0.4(t − 3)(t − 7)
t − 3 = lim

t → 3
0.4(t − 3)(t − 7)

t − 3
= lim

t → 3
0.4(t − 7) Cancel.

= −1.6 Evaluate the limit.

The instantaneous rate of change of the temperature at midnight is −1.6°F per hour.
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3.5

Example 3.10

Rate of Change of Profit

A toy company can sell x electronic gaming systems at a price of p = −0.01x + 400 dollars per gaming

system. The cost of manufacturing x systems is given by C(x) = 100x + 10,000 dollars. Find the rate of change

of profit when 10,000 games are produced. Should the toy company increase or decrease production?

Solution

The profit P(x) earned by producing x gaming systems is R(x) − C(x), where R(x) is the revenue obtained

from the sale of x games. Since the company can sell x games at p = −0.01x + 400 per game,

R(x) = xp = x(−0.01x + 400) = −0.01x2 + 400x.

Consequently,

P(x) = −0.01x2 + 300x − 10,000.

Therefore, evaluating the rate of change of profit gives

P′ (10000) = lim
x → 10000

P(x) − P(10000)
x − 10000

= lim
x → 10000

−0.01x2 + 300x − 10000 − 1990000
x − 10000

= lim
x → 10000

−0.01x2 + 300x − 2000000
x − 10000

= 100.

Since the rate of change of profit P′ (10,000) > 0 and P(10,000) > 0, the company should increase

production.

A coffee shop determines that the daily profit on scones obtained by charging s dollars per scone is

P(s) = −20s2 + 150s − 10. The coffee shop currently charges $3.25 per scone. Find P′(3.25), the rate of

change of profit when the price is $3.25 and decide whether or not the coffee shop should consider raising or

lowering its prices on scones.
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