
3.6 EXERCISES
For the following exercises, given y = f (u) and

u = g(x), find
dy
dx by using Leibniz’s notation for the

chain rule:
dy
dx = dy

du
du
dx .

214. y = 3u − 6, u = 2x2

215. y = 6u3, u = 7x − 4

216. y = sinu, u = 5x − 1

217. y = cosu, u = −x
8

218. y = tanu, u = 9x + 2

219. y = 4u + 3, u = x2 − 6x

For each of the following exercises,

a. decompose each function in the form y = f (u)
and u = g(x), and

b. find
dy
dx as a function of x.

220. y = (3x − 2)6

221. y = ⎛⎝3x2 + 1⎞⎠
3

222. y = sin5 (x)

223. y = ⎛⎝x7 + 7
x
⎞
⎠
7

224. y = tan(secx)

225. y = csc(πx + 1)

226. y = cot2 x

227. y = −6sin−3 x

For the following exercises, find
dy
dx for each function.

228. y = ⎛⎝3x2 + 3x − 1⎞⎠
4

229. y = (5 − 2x)−2

230. y = cos3 (πx)

231. y = ⎛⎝2x3 − x2 + 6x + 1⎞⎠
3

232. y = 1
sin2(x)

233. y = (tanx + sinx)−3

234. y = x2 cos4 x

235. y = sin(cos7x)

236. y = 6 + secπx2

237. y = cot3 (4x + 1)

238. Let y = ⎡
⎣ f (x)⎤⎦3 and suppose that f ′ (1) = 4 and

dy
dx = 10 for x = 1. Find f (1).

239. Let y = ⎛⎝ f (x) + 5x2⎞⎠
4

and suppose that

f (−1) = −4 and
dy
dx = 3 when x = −1. Find f ′ (−1)

240. Let y = ⎛
⎝ f (u) + 3x⎞⎠2 and u = x3 − 2x. If

f (4) = 6 and
dy
dx = 18 when x = 2, find f ′ (4).

241. [T] Find the equation of the tangent line to

y = −sin⎛⎝x2
⎞
⎠ at the origin. Use a calculator to graph the

function and the tangent line together.

242. [T] Find the equation of the tangent line to

y = ⎛⎝3x + 1
x
⎞
⎠
2

at the point (1, 16). Use a calculator to

graph the function and the tangent line together.

243. Find the x -coordinates at which the tangent line to

y = ⎛⎝x − 6
x
⎞
⎠
8

is horizontal.

244. [T] Find an equation of the line that is normal to

g(θ) = sin2 (πθ) at the point ⎛⎝14, 1
2
⎞
⎠. Use a calculator to

graph the function and the normal line together.

For the following exercises, use the information in the
following table to find h′(a) at the given value for a.
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x f(x) f′(x) g(x) g′(x)

0 2 5 0 2

1 1 −2 3 0

2 4 4 1 −1

3 3 −3 2 3

245. h(x) = f ⎛⎝g(x)⎞⎠; a = 0

246. h(x) = g⎛⎝ f (x)⎞⎠; a = 0

247. h(x) = ⎛⎝x4 + g(x)⎞⎠
−2

; a = 1

248. h(x) = ⎛⎝
f (x)
g(x)
⎞
⎠

2
; a = 3

249. h(x) = f ⎛⎝x + f (x)⎞⎠; a = 1

250. h(x) = ⎛
⎝1 + g(x)⎞⎠3; a = 2

251. h(x) = g⎛⎝2 + f ⎛⎝x2⎞⎠
⎞
⎠; a = 1

252. h(x) = f ⎛⎝g(sinx)⎞⎠; a = 0

253. [T] The position function of a freight train is given by

s(t) = 100(t + 1)−2, with s in meters and t in seconds.

At time t = 6 s, find the train’s

a. velocity and
b. acceleration.
c. Using a. and b. is the train speeding up or slowing

down?

254. [T] A mass hanging from a vertical spring is in
simple harmonic motion as given by the following position
function, where t is measured in seconds and s is in

inches: s(t) = −3cos⎛⎝πt + π
4
⎞
⎠.

a. Determine the position of the spring at t = 1.5 s.

b. Find the velocity of the spring at t = 1.5 s.

255. [T] The total cost to produce x boxes of Thin Mint

Girl Scout cookies is C dollars, where

C = 0.0001x3 − 0.02x2 + 3x + 300. In t weeks

production is estimated to be x = 1600 + 100t boxes.

a. Find the marginal cost C′ (x).
b. Use Leibniz’s notation for the chain rule,

dC
dt = dC

dx · dxdt , to find the rate with respect to

time t that the cost is changing.

c. Use b. to determine how fast costs are increasing
when t = 2 weeks. Include units with the answer.

256. [T] The formula for the area of a circle is A = πr2,
where r is the radius of the circle. Suppose a circle is

expanding, meaning that both the area A and the radius r
(in inches) are expanding.

a. Suppose r = 2 − 100
(t + 7)2 where t is time in

seconds. Use the chain rule dA
dt = dA

dr · drdt to find

the rate at which the area is expanding.
b. Use a. to find the rate at which the area is

expanding at t = 4 s.

257. [T] The formula for the volume of a sphere is

S = 4
3πr

3, where r (in feet) is the radius of the sphere.

Suppose a spherical snowball is melting in the sun.

a. Suppose r = 1
(t + 1)2 − 1

12 where t is time in

minutes. Use the chain rule dS
dt = dS

dr · drdt to find

the rate at which the snowball is melting.
b. Use a. to find the rate at which the volume is

changing at t = 1 min.

258. [T] The daily temperature in degrees Fahrenheit of
Phoenix in the summer can be modeled by the function

T(x) = 94 − 10cos⎡⎣ π12(x − 2)⎤⎦, where x is hours after

midnight. Find the rate at which the temperature is
changing at 4 p.m.

259. [T] The depth (in feet) of water at a dock changes
with the rise and fall of tides. The depth is modeled by

the function D(t) = 5sin⎛⎝π6 t − 7π
6
⎞
⎠+ 8, where t is the

number of hours after midnight. Find the rate at which the
depth is changing at 6 a.m.
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