## **3.6 EXERCISES**

For the following exercises, given y = f(u) and u = g(x), find  $\frac{dy}{dx}$  by using Leibniz's notation for the chain rule:  $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ . 214. y = 3u - 6,  $u = 2x^2$ 215.  $y = 6u^3$ , u = 7x - 4216.  $y = \sin u$ , u = 5x - 1217.  $y = \cos u$ ,  $u = \frac{-x}{8}$ 218.  $y = \tan u$ , u = 9x + 2

For each of the following exercises,

219.  $y = \sqrt{4u+3}, u = x^2 - 6x$ 

a. decompose each function in the form y = f(u)and u = g(x), and

b. find 
$$\frac{dy}{dx}$$
 as a function of *x*.

220.  $y = (3x - 2)^6$ 

- 221.  $y = (3x^2 + 1)^3$
- 222.  $y = \sin^5(x)$
- $223. \quad y = \left(\frac{x}{7} + \frac{7}{x}\right)^7$
- 224.  $y = \tan(\sec x)$
- 225.  $y = \csc(\pi x + 1)$
- 226.  $y = \cot^2 x$

227. 
$$y = -6\sin^{-3}x$$

For the following exercises, find  $\frac{dy}{dx}$  for each function.

228.  $y = (3x^2 + 3x - 1)^4$ 229.  $y = (5 - 2x)^{-2}$ 

230. 
$$y = \cos^{3}(\pi x)$$
  
231.  $y = (2x^{3} - x^{2} + 6x + 1)^{3}$   
232.  $y = \frac{1}{\sin^{2}(x)}$   
233.  $y = (\tan x + \sin x)^{-3}$   
234.  $y = x^{2}\cos^{4}x$   
235.  $y = \sin(\cos 7x)$   
236.  $y = \sqrt{6 + \sec \pi x^{2}}$   
237.  $y = \cot^{3}(4x + 1)$   
238. Let  $y = [f(x)]^{3}$  and support

238. Let  $y = [f(x)]^3$  and suppose that f'(1) = 4 and  $\frac{dy}{dx} = 10$  for x = 1. Find f(1).

239. Let 
$$y = (f(x) + 5x^2)^4$$
 and suppose that  $f(-1) = -4$  and  $\frac{dy}{dx} = 3$  when  $x = -1$ . Find  $f'(-1)$ 

240. Let  $y = (f(u) + 3x)^2$  and  $u = x^3 - 2x$ . If f(4) = 6 and  $\frac{dy}{dx} = 18$  when x = 2, find f'(4).

241. **[T]** Find the equation of the tangent line to  $y = -\sin(\frac{x}{2})$  at the origin. Use a calculator to graph the function and the tangent line together.

242. **[T]** Find the equation of the tangent line to  $y = \left(3x + \frac{1}{x}\right)^2$  at the point (1, 16). Use a calculator to graph the function and the tangent line together.

243. Find the *x*-coordinates at which the tangent line to  $y = \left(x - \frac{6}{x}\right)^8$  is horizontal.

244. **[T]** Find an equation of the line that is normal to  $g(\theta) = \sin^2(\pi\theta)$  at the point  $(\frac{1}{4}, \frac{1}{2})$ . Use a calculator to graph the function and the normal line together.

For the following exercises, use the information in the following table to find h'(a) at the given value for *a*.

| x | f(x) | f'(x) | g(x) | g'(x) |
|---|------|-------|------|-------|
| 0 | 2    | 5     | 0    | 2     |
| 1 | 1    | -2    | 3    | 0     |
| 2 | 4    | 4     | 1    | -1    |
| 3 | 3    | -3    | 2    | 3     |

- 245. h(x) = f(g(x)); a = 0
- 246. h(x) = g(f(x)); a = 0

247. 
$$h(x) = (x^4 + g(x))^{-2}; a = 1$$

248. 
$$h(x) = \left(\frac{f(x)}{g(x)}\right)^2; a = 3$$

249. 
$$h(x) = f(x + f(x)); a = 1$$

250. 
$$h(x) = (1 + g(x))^3; a = 2$$

251. 
$$h(x) = g(2 + f(x^2)); a = 1$$

252. 
$$h(x) = f(g(\sin x)); a = 0$$

253. **[T]** The position function of a freight train is given by  $s(t) = 100(t + 1)^{-2}$ , with *s* in meters and *t* in seconds. At time t = 6 s, find the train's

- a. velocity and
- b. acceleration.
- c. Using a. and b. is the train speeding up or slowing down?

254. **[T]** A mass hanging from a vertical spring is in simple harmonic motion as given by the following position function, where t is measured in seconds and s is in

inches:  $s(t) = -3\cos\left(\pi t + \frac{\pi}{4}\right)$ .

- a. Determine the position of the spring at t = 1.5 s.
- b. Find the velocity of the spring at t = 1.5 s.

255. **[T]** The total cost to produce *x* boxes of Thin Mint Girl Scout cookies is *C* dollars, where  $C = 0.0001x^3 - 0.02x^2 + 3x + 300$ . In *t* weeks production is estimated to be x = 1600 + 100t boxes.

- a. Find the marginal cost C'(x).
- b. Use Leibniz's notation for the chain rule,  $\frac{dC}{dt} = \frac{dC}{dx} \cdot \frac{dx}{dt}$ , to find the rate with respect to time *t* that the cost is changing.
- c. Use b. to determine how fast costs are increasing when t = 2 weeks. Include units with the answer.

256. **[T]** The formula for the area of a circle is  $A = \pi r^2$ , where *r* is the radius of the circle. Suppose a circle is expanding, meaning that both the area *A* and the radius *r* (in inches) are expanding.

a. Suppose  $r = 2 - \frac{100}{(t+7)^2}$  where *t* is time in seconds. Use the chain rule  $\frac{dA}{dt} = \frac{dA}{dr} \cdot \frac{dr}{dt}$  to find

the rate at which the area is expanding.

b. Use a. to find the rate at which the area is expanding at t = 4 s.

257. **[T]** The formula for the volume of a sphere is  $S = \frac{4}{3}\pi r^3$ , where *r* (in feet) is the radius of the sphere.

Suppose a spherical snowball is melting in the sun.

a. Suppose  $r = \frac{1}{(t+1)^2} - \frac{1}{12}$  where *t* is time in

minutes. Use the chain rule  $\frac{dS}{dt} = \frac{dS}{dr} \cdot \frac{dr}{dt}$  to find the rate at which the snowball is melting.

b. Use a. to find the rate at which the volume is changing at t = 1 min.

258. **[T]** The daily temperature in degrees Fahrenheit of Phoenix in the summer can be modeled by the function  $T(x) = 94 - 10\cos\left[\frac{\pi}{12}(x-2)\right]$ , where *x* is hours after midnight. Find the rate at which the temperature is changing at 4 p.m.

259. **[T]** The depth (in feet) of water at a dock changes with the rise and fall of tides. The depth is modeled by the function  $D(t) = 5\sin\left(\frac{\pi}{6}t - \frac{7\pi}{6}\right) + 8$ , where *t* is the number of hours after midnight. Find the rate at which the depth is changing at 6 a.m.