3.6 EXERCISES

For the following exercises, given $y=f(u)$ and $u=g(x)$, find $\frac{d y}{d x}$ by using Leibniz's notation for the chain rule: $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$.
214. $y=3 u-6, u=2 x^{2}$
215. $y=6 u^{3}, u=7 x-4$
216. $y=\sin u, u=5 x-1$
217. $y=\cos u, u=\frac{-x}{8}$
218. $y=\tan u, u=9 x+2$
219. $y=\sqrt{4 u+3}, u=x^{2}-6 x$

For each of the following exercises,
a. decompose each function in the form $y=f(u)$ and $u=g(x)$, and
b. find $\frac{d y}{d x}$ as a function of x.
220. $y=(3 x-2)^{6}$
221. $y=\left(3 x^{2}+1\right)^{3}$
222. $y=\sin ^{5}(x)$
223. $y=\left(\frac{x}{7}+\frac{7}{x}\right)^{7}$
224. $y=\tan (\sec x)$
225. $y=\csc (\pi x+1)$
226. $y=\cot ^{2} x$
227. $y=-6 \sin ^{-3} x$

For the following exercises, find $\frac{d y}{d x}$ for each function.
228. $y=\left(3 x^{2}+3 x-1\right)^{4}$
229. $y=(5-2 x)^{-2}$
230. $y=\cos ^{3}(\pi x)$
231. $y=\left(2 x^{3}-x^{2}+6 x+1\right)^{3}$
232. $y=\frac{1}{\sin ^{2}(x)}$
233. $y=(\tan x+\sin x)^{-3}$
234. $y=x^{2} \cos ^{4} x$
235. $y=\sin (\cos 7 x)$
236. $y=\sqrt{6+\sec \pi x^{2}}$
237. $y=\cot ^{3}(4 x+1)$
238. Let $y=[f(x)]^{3}$ and suppose that $f^{\prime}(1)=4$ and $\frac{d y}{d x}=10$ for $x=1$. Find $f(1)$.
239. Let $y=\left(f(x)+5 x^{2}\right)^{4}$ and suppose that $f(-1)=-4$ and $\frac{d y}{d x}=3$ when $x=-1$. Find $f^{\prime}(-1)$
240. Let $y=(f(u)+3 x)^{2}$ and $u=x^{3}-2 x$. If $f(4)=6$ and $\frac{d y}{d x}=18$ when $x=2$, find $f^{\prime}(4)$.
241. [T] Find the equation of the tangent line to $y=-\sin \left(\frac{x}{2}\right)$ at the origin. Use a calculator to graph the function and the tangent line together.
242. [T] Find the equation of the tangent line to $y=\left(3 x+\frac{1}{x}\right)^{2}$ at the point $(1,16)$. Use a calculator to graph the function and the tangent line together.
243. Find the x-coordinates at which the tangent line to $y=\left(x-\frac{6}{x}\right)^{8}$ is horizontal.
244. [T] Find an equation of the line that is normal to $g(\theta)=\sin ^{2}(\pi \theta)$ at the point $\left(\frac{1}{4}, \frac{1}{2}\right)$. Use a calculator to graph the function and the normal line together.

For the following exercises, use the information in the following table to find $h^{\prime}(a)$ at the given value for a.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	2	5	0	2
1	1	-2	3	0
2	4	4	1	-1
3	3	-3	2	3

245. $h(x)=f(g(x)) ; a=0$
246. $h(x)=g(f(x)) ; a=0$
247. $h(x)=\left(x^{4}+g(x)\right)^{-2} ; a=1$
248. $h(x)=\left(\frac{f(x)}{g(x)}\right)^{2} ; a=3$
249. $h(x)=f(x+f(x)) ; a=1$
250. $h(x)=(1+g(x))^{3} ; a=2$
251. $h(x)=g\left(2+f\left(x^{2}\right)\right) ; a=1$
252. $h(x)=f(g(\sin x)) ; a=0$
253. [T] The position function of a freight train is given by $s(t)=100(t+1)^{-2}$, with s in meters and t in seconds.
At time $t=6 \mathrm{~s}$, find the train's
a. velocity and
b. acceleration.
c. Using a. and b. is the train speeding up or slowing down?
254. [T] A mass hanging from a vertical spring is in simple harmonic motion as given by the following position function, where t is measured in seconds and s is in inches: $s(t)=-3 \cos \left(\pi t+\frac{\pi}{4}\right)$.
a. Determine the position of the spring at $t=1.5 \mathrm{~s}$.
b. Find the velocity of the spring at $t=1.5 \mathrm{~s}$.
255. [T] The total cost to produce x boxes of Thin Mint Girl Scout cookies is C dollars, where $C=0.0001 x^{3}-0.02 x^{2}+3 x+300$. In t weeks production is estimated to be $x=1600+100 t$ boxes.
a. Find the marginal cost $C^{\prime}(x)$.
b. Use Leibniz's notation for the chain rule, $\frac{d C}{d t}=\frac{d C}{d x} \cdot \frac{d x}{d t}$, to find the rate with respect to time t that the cost is changing.
c. Use b. to determine how fast costs are increasing when $t=2$ weeks. Include units with the answer.
256. [T] The formula for the area of a circle is $A=\pi r^{2}$, where r is the radius of the circle. Suppose a circle is expanding, meaning that both the area A and the radius r (in inches) are expanding.
a. Suppose $r=2-\frac{100}{(t+7)^{2}}$ where t is time in seconds. Use the chain rule $\frac{d A}{d t}=\frac{d A}{d r} \cdot \frac{d r}{d t}$ to find the rate at which the area is expanding.
b. Use a. to find the rate at which the area is expanding at $t=4 \mathrm{~s}$.
257. [T] The formula for the volume of a sphere is $S=\frac{4}{3} \pi r^{3}$, where r (in feet) is the radius of the sphere.

Suppose a spherical snowball is melting in the sun.
a. Suppose $r=\frac{1}{(t+1)^{2}}-\frac{1}{12}$ where t is time in minutes. Use the chain rule $\frac{d S}{d t}=\frac{d S}{d r} \cdot \frac{d r}{d t}$ to find the rate at which the snowball is melting.
b. Use a. to find the rate at which the volume is changing at $t=1 \mathrm{~min}$.
258. [T] The daily temperature in degrees Fahrenheit of Phoenix in the summer can be modeled by the function $T(x)=94-10 \cos \left[\frac{\pi}{12}(x-2)\right]$, where x is hours after midnight. Find the rate at which the temperature is changing at 4 p.m.
259. [T] The depth (in feet) of water at a dock changes with the rise and fall of tides. The depth is modeled by the function $D(t)=5 \sin \left(\frac{\pi}{6} t-\frac{7 \pi}{6}\right)+8$, where t is the number of hours after midnight. Find the rate at which the depth is changing at 6 a.m.

