
3.2 | The Derivative as a Function

Learning Objectives
3.2.1 Define the derivative function of a given function.

3.2.2 Graph a derivative function from the graph of a given function.

3.2.3 State the connection between derivatives and continuity.

3.2.4 Describe three conditions for when a function does not have a derivative.

3.2.5 Explain the meaning of a higher-order derivative.

As we have seen, the derivative of a function at a given point gives us the rate of change or slope of the tangent line to the
function at that point. If we differentiate a position function at a given time, we obtain the velocity at that time. It seems
reasonable to conclude that knowing the derivative of the function at every point would produce valuable information about
the behavior of the function. However, the process of finding the derivative at even a handful of values using the techniques
of the preceding section would quickly become quite tedious. In this section we define the derivative function and learn a
process for finding it.

Derivative Functions
The derivative function gives the derivative of a function at each point in the domain of the original function for which the
derivative is defined. We can formally define a derivative function as follows.

Definition

Let f be a function. The derivative function, denoted by f ′, is the function whose domain consists of those values

of x such that the following limit exists:

(3.9)f ′ (x) = lim
h → 0

f (x + h) − f (x)
h .

A function f (x) is said to be differentiable at a if f ′(a) exists. More generally, a function is said to be differentiable

on S if it is differentiable at every point in an open set S, and a differentiable function is one in which f ′(x) exists on

its domain.

In the next few examples we use Equation 3.9 to find the derivative of a function.

Example 3.11

Finding the Derivative of a Square-Root Function

Find the derivative of f (x) = x.

Solution

Start directly with the definition of the derivative function. Use Equation 3.1.
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3.6

f ′ (x) = lim
h → 0

x + h − x
h

Substitute f (x + h) = x + h and f (x) = x

into f ′ (x) = lim
h → 0

f (x + h) − f (x)
h .

= lim
h → 0

x + h − x
h · x + h + x

x + h + x

Multiply numerator and denominator by
x + h + x without distributing in the

denominator.
= lim

h → 0
h

h( x + h + x)
Multiply the numerators and simplify.

= lim
h → 0

1
( x + h + x)

Cancel the h.

= 1
2 x Evaluate the limit.

Example 3.12

Finding the Derivative of a Quadratic Function

Find the derivative of the function f (x) = x2 − 2x.

Solution

Follow the same procedure here, but without having to multiply by the conjugate.

f ′ (x) = lim
h → 0

((x + h)2 − 2(x + h)) − (x2 − 2x)
h

Substitute f (x + h) = (x + h)2 − 2(x + h) and

f (x) = x2 − 2x into

f ′ (x) = lim
h → 0

f (x + h) − f (x)
h .

= lim
h → 0

x2 + 2xh + h2 − 2x − 2h − x2 + 2x
h Expand (x + h)2 − 2(x + h).

= lim
h → 0

2xh − 2h + h2

h Simplify.

= lim
h → 0

h(2x − 2 + h)
h Factor out h from the numerator.

= lim
h → 0

(2x − 2 + h) Cancel the common factor of h.

= 2x − 2 Evaluate the limit.

Find the derivative of f (x) = x2.

We use a variety of different notations to express the derivative of a function. In Example 3.12 we showed that if

f (x) = x2 − 2x, then f ′ (x) = 2x − 2. If we had expressed this function in the form y = x2 − 2x, we could have

expressed the derivative as y′ = 2x − 2 or
dy
dx = 2x − 2. We could have conveyed the same information by writing

d
dx
⎛
⎝x2 − 2x⎞⎠ = 2x − 2. Thus, for the function y = f (x), each of the following notations represents the derivative of

f (x):
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f ′ (x), dy
dx, y′, d

dx
⎛
⎝ f (x)⎞⎠.

In place of f ′ (a) we may also use
dy
dx |x = a

Use of the
dy
dx notation (called Leibniz notation) is quite common in

engineering and physics. To understand this notation better, recall that the derivative of a function at a point is the limit of
the slopes of secant lines as the secant lines approach the tangent line. The slopes of these secant lines are often expressed

in the form
Δy
Δx where Δy is the difference in the y values corresponding to the difference in the x values, which are

expressed as Δx (Figure 3.11). Thus the derivative, which can be thought of as the instantaneous rate of change of y
with respect to x, is expressed as

dy
dx = lim

Δx → 0
Δy
Δx.

Figure 3.11 The derivative is expressed as
dy
dx = lim

Δx → 0
Δy
Δx.

Graphing a Derivative
We have already discussed how to graph a function, so given the equation of a function or the equation of a derivative
function, we could graph it. Given both, we would expect to see a correspondence between the graphs of these two
functions, since f ′(x) gives the rate of change of a function f (x) (or slope of the tangent line to f (x)).

In Example 3.11 we found that for f (x) = x, f ′(x) = 1/2 x. If we graph these functions on the same axes, as in Figure

3.12, we can use the graphs to understand the relationship between these two functions. First, we notice that f (x) is

increasing over its entire domain, which means that the slopes of its tangent lines at all points are positive. Consequently,
we expect f ′ (x) > 0 for all values of x in its domain. Furthermore, as x increases, the slopes of the tangent lines to f (x)
are decreasing and we expect to see a corresponding decrease in f ′(x). We also observe that f (0) is undefined and that

lim
x → 0+

f ′ (x) = +∞, corresponding to a vertical tangent to f (x) at 0.
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Figure 3.12 The derivative f ′(x) is positive everywhere

because the function f (x) is increasing.

In Example 3.12 we found that for f (x) = x2 − 2x, f ′ (x) = 2x − 2. The graphs of these functions are shown in Figure

3.13. Observe that f (x) is decreasing for x < 1. For these same values of x, f ′ (x) < 0. For values of x > 1, f (x) is

increasing and f ′ (x) > 0. Also, f (x) has a horizontal tangent at x = 1 and f ′ (1) = 0.

Figure 3.13 The derivative f ′ (x) < 0 where the function

f (x) is decreasing and f ′ (x) > 0 where f (x) is increasing.

The derivative is zero where the function has a horizontal
tangent.

Example 3.13

Sketching a Derivative Using a Function

Use the following graph of f (x) to sketch a graph of f ′ (x).
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3.7

Solution

The solution is shown in the following graph. Observe that f (x) is increasing and f ′ (x) > 0 on ( – 2, 3). Also,

f (x) is decreasing and f ′ (x) < 0 on (−∞, −2) and on (3, +∞). Also note that f (x) has horizontal tangents

at – 2 and 3, and f ′ (−2) = 0 and f ′ (3) = 0.

Sketch the graph of f (x) = x2 − 4. On what interval is the graph of f ′ (x) above the x -axis?

Derivatives and Continuity
Now that we can graph a derivative, let’s examine the behavior of the graphs. First, we consider the relationship between
differentiability and continuity. We will see that if a function is differentiable at a point, it must be continuous there;
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however, a function that is continuous at a point need not be differentiable at that point. In fact, a function may be continuous
at a point and fail to be differentiable at the point for one of several reasons.

Theorem 3.1: Differentiability Implies Continuity

Let f (x) be a function and a be in its domain. If f (x) is differentiable at a, then f is continuous at a.

Proof

If f (x) is differentiable at a, then f ′(a) exists and

f ′ (a) = limx → a
f (x) − f (a)

x − a .

We want to show that f (x) is continuous at a by showing that limx → a f (x) = f (a). Thus,

limx → a f (x) = limx → a
⎛
⎝ f (x) − f (a) + f (a)⎞⎠

= limx → a
⎛
⎝
f (x) − f (a)

x − a · (x − a) + f (a)⎞⎠ Multiply and divide f (x) − f (a) by x − a.

= ⎛⎝ limx → a
f (x) − f (a)

x − a
⎞
⎠ · ⎛⎝ limx → a(x − a)⎞⎠+ limx → a f (a)

= f ′(a) · 0 + f (a)
= f (a).

Therefore, since f (a) is defined and limx → a f (x) = f (a), we conclude that f is continuous at a.

□

We have just proven that differentiability implies continuity, but now we consider whether continuity implies
differentiability. To determine an answer to this question, we examine the function f (x) = |x|. This function is continuous

everywhere; however, f ′(0) is undefined. This observation leads us to believe that continuity does not imply

differentiability. Let’s explore further. For f (x) = |x|,

f ′ (0) = lim
x → 0

f (x) − f (0)
x − 0 = lim

x → 0
|x| − |0|
x − 0 = lim

x → 0
|x|
x .

This limit does not exist because

lim
x → 0−

|x|
x = −1 and lim

x → 0+
|x|
x = 1.

See Figure 3.14.
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Figure 3.14 The function f (x) = |x| is continuous at 0 but

is not differentiable at 0.

Let’s consider some additional situations in which a continuous function fails to be differentiable. Consider the function

f (x) = x3 :

f ′ (0) = lim
x → 0

x3 − 0
x − 0 = lim

x → 0
1
x23 = +∞.

Thus f ′ (0) does not exist. A quick look at the graph of f (x) = x3 clarifies the situation. The function has a vertical

tangent line at 0 (Figure 3.15).

Figure 3.15 The function f (x) = x3 has a vertical tangent at

x = 0. It is continuous at 0 but is not differentiable at 0.

The function f (x) =
⎧
⎩
⎨xsin⎛⎝1x

⎞
⎠ if x ≠ 0

0 if x = 0
also has a derivative that exhibits interesting behavior at 0. We see that

f ′ (0) = lim
x → 0

xsin(1/x) − 0
x − 0 = lim

x → 0
sin⎛⎝1x

⎞
⎠.

This limit does not exist, essentially because the slopes of the secant lines continuously change direction as they approach
zero (Figure 3.16).
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Figure 3.16 The function f (x) =
⎧
⎩
⎨xsin⎛⎝1x

⎞
⎠ if x ≠ 0

0 if x = 0
is not

differentiable at 0.

In summary:

1. We observe that if a function is not continuous, it cannot be differentiable, since every differentiable function must
be continuous. However, if a function is continuous, it may still fail to be differentiable.

2. We saw that f (x) = |x| failed to be differentiable at 0 because the limit of the slopes of the tangent lines on the

left and right were not the same. Visually, this resulted in a sharp corner on the graph of the function at 0. From

this we conclude that in order to be differentiable at a point, a function must be “smooth” at that point.

3. As we saw in the example of f (x) = x3 , a function fails to be differentiable at a point where there is a vertical

tangent line.

4. As we saw with f (x) =
⎧
⎩
⎨xsin⎛⎝1x

⎞
⎠ if x ≠ 0

0 if x = 0
a function may fail to be differentiable at a point in more complicated

ways as well.

Example 3.14

A Piecewise Function that is Continuous and Differentiable

A toy company wants to design a track for a toy car that starts out along a parabolic curve and then converts
to a straight line (Figure 3.17). The function that describes the track is to have the form

f (x) =
⎧
⎩
⎨

1
10x

2 + bx + c if x < −10

−1
4x + 5

2 if x ≥ −10
where x and f (x) are in inches. For the car to move smoothly along the

track, the function f (x) must be both continuous and differentiable at −10. Find values of b and c that make

f (x) both continuous and differentiable.
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3.8

Figure 3.17 For the car to move smoothly along the track, the
function must be both continuous and differentiable.

Solution

For the function to be continuous at x = −10, lim
x → 10− f (x) = f (−10). Thus, since

lim
x → −10− f (x) = 1

10(−10)2 − 10b + c = 10 − 10b + c

and f (−10) = 5, we must have 10 − 10b + c = 5. Equivalently, we have c = 10b − 5.

For the function to be differentiable at −10,

f ′ (10) = lim
x → −10

f (x) − f (−10)
x + 10

must exist. Since f (x) is defined using different rules on the right and the left, we must evaluate this limit from

the right and the left and then set them equal to each other:

lim
x → −10−

f (x) − f (−10)
x + 10 = lim

x → −10−

1
10x

2 + bx + c − 5
x + 10

= lim
x → −10−

1
10x

2 + bx + (10b − 5) − 5
x + 10 Substitute c = 10b − 5.

= lim
x → −10−

x2 − 100 + 10bx + 100b
10(x + 10)

= lim
x → −10−

(x + 10)(x − 10 + 10b)
10(x + 10) Factor by grouping.

= b − 2.

We also have

lim
x → −10+

f (x) − f (−10)
x + 10 = lim

x → −10+

− 1
4x + 5

2 − 5
x + 10

= lim
x → −10+

−(x + 10)
4(x + 10)

= − 1
4.

This gives us b − 2 = − 1
4. Thus b = 7

4 and c = 10⎛⎝74
⎞
⎠− 5 = 25

2 .

Find values of a and b that make f (x) =
⎧
⎩
⎨ax + b if x < 3

x2 if x ≥ 3
both continuous and differentiable at 3.
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Higher-Order Derivatives
The derivative of a function is itself a function, so we can find the derivative of a derivative. For example, the derivative
of a position function is the rate of change of position, or velocity. The derivative of velocity is the rate of change of
velocity, which is acceleration. The new function obtained by differentiating the derivative is called the second derivative.
Furthermore, we can continue to take derivatives to obtain the third derivative, fourth derivative, and so on. Collectively,
these are referred to as higher-order derivatives. The notation for the higher-order derivatives of y = f (x) can be

expressed in any of the following forms:

f ″(x), f‴(x), f (4) (x),…, f (n) (x)

y″(x), y‴(x), y(4) (x),…, y(n) (x)

d2 y
dx2 , d

3 y
dx3 , d

4 y
dx4 ,…, d

n y
dxn

.

It is interesting to note that the notation for
d2 y
dx2 may be viewed as an attempt to express d

dx
⎛
⎝
dy
dx
⎞
⎠ more compactly.

Analogously, d
dx
⎛
⎝ ddx
⎛
⎝
dy
dx
⎞
⎠
⎞
⎠ = d

dx
⎛
⎝
⎜ d

2 y
dx2

⎞
⎠
⎟ = d3 y

dx3 .

Example 3.15

Finding a Second Derivative

For f (x) = 2x2 − 3x + 1, find f ″(x).

Solution

First find f ′(x).

f ′ (x) = lim
h → 0

⎛
⎝2(x + h)2 − 3(x + h) + 1⎞⎠− (2x2 − 3x + 1)

h

Substitute f (x) = 2x2 − 3x + 1
and
f (x + h) = 2(x + h)2 − 3(x + h) + 1

into f ′ (x) = lim
h → 0

f (x + h) − f (x)
h .

= lim
h → 0

4xh + 2h2 − 3h
h Simplify the numerator.

= lim
h → 0

(4x + 2h − 3)
Factor out the h in the numerator
and cancel with the h in the
denominator.

= 4x − 3 Take the limit.

Next, find f ″(x) by taking the derivative of f ′ (x) = 4x − 3.

f ″(x) = lim
h → 0

f ′ (x + h) − f ′(x)
h

Use f ′ (x) = lim
h → 0

f (x + h) − f (x)
h with f ′(x) in

place of f (x).

= lim
h → 0

⎛
⎝4(x + h) − 3⎞⎠− (4x − 3)

h
Substitute f ′ (x + h) = 4(x + h) − 3 and
f ′ (x) = 4x − 3.

= lim
h → 0

4 Simplify.

= 4 Take the limit.
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3.9

3.10

Find f ″(x) for f (x) = x2.

Example 3.16

Finding Acceleration

The position of a particle along a coordinate axis at time t (in seconds) is given by s(t) = 3t2 − 4t + 1 (in

meters). Find the function that describes its acceleration at time t.

Solution

Since v(t) = s′(t) and a(t) = v′ (t) = s″(t), we begin by finding the derivative of s(t) :

s′ (t) = lim
h → 0

s(t + h) − s(t)
h

= lim
h → 0

3(t + h)2 − 4(t + h) + 1 − ⎛⎝3t2 − 4t + 1⎞⎠
h

= 6t − 4.

Next,

s″(t) = lim
h → 0

s′ (t + h) − s′(t)
h

= lim
h → 0

6(t + h) − 4 − (6t − 4)
h

= 6.

Thus, a = 6 m/s2.

For s(t) = t3, find a(t).

242 Chapter 3 | Derivatives

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12


