
3.9 | Derivatives of Exponential and Logarithmic

Functions

Learning Objectives
3.9.1 Find the derivative of exponential functions.

3.9.2 Find the derivative of logarithmic functions.

3.9.3 Use logarithmic differentiation to determine the derivative of a function.

So far, we have learned how to differentiate a variety of functions, including trigonometric, inverse, and implicit functions.
In this section, we explore derivatives of exponential and logarithmic functions. As we discussed in Introduction to
Functions and Graphs, exponential functions play an important role in modeling population growth and the decay
of radioactive materials. Logarithmic functions can help rescale large quantities and are particularly helpful for rewriting
complicated expressions.

Derivative of the Exponential Function
Just as when we found the derivatives of other functions, we can find the derivatives of exponential and logarithmic
functions using formulas. As we develop these formulas, we need to make certain basic assumptions. The proofs that these
assumptions hold are beyond the scope of this course.

First of all, we begin with the assumption that the function B(x) = bx, b > 0, is defined for every real number and is

continuous. In previous courses, the values of exponential functions for all rational numbers were defined—beginning
with the definition of bn, where n is a positive integer—as the product of b multiplied by itself n times. Later,

we defined b0 = 1, b−n = 1
bn

, for a positive integer n, and bs/t = ( bt )s for positive integers s and t. These

definitions leave open the question of the value of br where r is an arbitrary real number. By assuming the continuity of

B(x) = bx, b > 0, we may interpret br as limx → rb
x where the values of x as we take the limit are rational. For example,

we may view 4π as the number satisfying

43 < 4π < 44, 43.1 < 4π < 43.2, 43.14 < 4π < 43.15,
43.141 < 4π < 43.142, 43.1415 < 4π < 43.1416 ,….

As we see in the following table, 4π ≈ 77.88.

Chapter 3 | Derivatives 319



x 4x x 4x

43 64 43.141593 77.8802710486

43.1 73.5166947198 43.1416 77.8810268071

43.14 77.7084726013 43.142 77.9242251944

43.141 77.8162741237 43.15 78.7932424541

43.1415 77.8702309526 43.2 84.4485062895

43.14159 77.8799471543 44 256

Table 3.6 Approximating a Value of 4π

We also assume that for B(x) = bx, b > 0, the value B′ (0) of the derivative exists. In this section, we show that by

making this one additional assumption, it is possible to prove that the function B(x) is differentiable everywhere.

We make one final assumption: that there is a unique value of b > 0 for which B′ (0) = 1. We define e to be this

unique value, as we did in Introduction to Functions and Graphs. Figure 3.33 provides graphs of the functions
y = 2x, y = 3x, y = 2.7x, and y = 2.8x. A visual estimate of the slopes of the tangent lines to these functions at 0

provides evidence that the value of e lies somewhere between 2.7 and 2.8. The function E(x) = ex is called the natural

exponential function. Its inverse, L(x) = loge x = lnx is called the natural logarithmic function.

320 Chapter 3 | Derivatives

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12



Figure 3.33 The graph of E(x) = ex is between y = 2x and y = 3x.

For a better estimate of e, we may construct a table of estimates of B′ (0) for functions of the form B(x) = bx. Before

doing this, recall that

B′ (0) = lim
x → 0

bx − b0

x − 0 = lim
x → 0

bx − 1
x ≈ bx − 1

x

for values of x very close to zero. For our estimates, we choose x = 0.00001 and x = −0.00001 to obtain the estimate

b−0.00001 − 1
−0.00001 < B′ (0) < b0.00001 − 1

0.00001 .

See the following table.
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b b−0.00001−1
−0.00001 < B′ (0) < b0.00001−1

0.00001
b b−0.00001−1

−0.00001 < B′ (0) < b0.00001−1
0.00001

2 0.693145 < B′ (0) < 0.69315 2.7183 1.000002 < B′ (0) < 1.000012

2.7 0.993247 < B′ (0) < 0.993257 2.719 1.000259 < B′ (0) < 1.000269

2.71 0.996944 < B′ (0) < 0.996954 2.72 1.000627 < B′ (0) < 1.000637

2.718 0.999891 < B′ (0) < 0.999901 2.8 1.029614 < B′ (0) < 1.029625

2.7182 0.999965 < B′ (0) < 0.999975 3 1.098606 < B′ (0) < 1.098618

Table 3.7 Estimating a Value of e

The evidence from the table suggests that 2.7182 < e < 2.7183.

The graph of E(x) = ex together with the line y = x + 1 are shown in Figure 3.34. This line is tangent to the graph of

E(x) = ex at x = 0.

Figure 3.34 The tangent line to E(x) = ex at x = 0 has

slope 1.

Now that we have laid out our basic assumptions, we begin our investigation by exploring the derivative of
B(x) = bx, b > 0. Recall that we have assumed that B′ (0) exists. By applying the limit definition to the derivative we

conclude that

(3.28)
B′ (0) = lim

h → 0
b0 + h − b0

h = lim
h → 0

bh − 1
h .

Turning to B′ (x), we obtain the following.
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B′ (x) = lim
h → 0

bx + h − bx
h Apply the limit definition of the derivative.

= lim
h → 0

bx bh − bx
h Note that bx + h = bx bh.

= lim
h → 0

bx(bh − 1)
h Factor out bx.

= bx lim
h → 0

bh − 1
h Apply a property of limits.

= bxB′ (0) Use B′ (0) = lim
h → 0

b0 + h − b0

h = lim
h → 0

bh − 1
h .

We see that on the basis of the assumption that B(x) = bx is differentiable at 0, B(x) is not only differentiable everywhere,

but its derivative is

(3.29)B′ (x) = bxB′ (0).

For E(x) = ex, E′ (0) = 1. Thus, we have E′ (x) = ex. (The value of B′ (0) for an arbitrary function of the form

B(x) = bx, b > 0, will be derived later.)

Theorem 3.14: Derivative of the Natural Exponential Function

Let E(x) = ex be the natural exponential function. Then

E′ (x) = ex.

In general,

d
dx
⎛
⎝e

g(x)⎞
⎠ = eg(x)g′ (x).

Example 3.74

Derivative of an Exponential Function

Find the derivative of f (x) = etan(2x).

Solution

Using the derivative formula and the chain rule,

f ′ (x) = etan(2x) d
dx
⎛
⎝tan(2x)⎞⎠

= etan(2x) sec2 (2x) · 2.

Example 3.75

Combining Differentiation Rules

Find the derivative of y = ex
2

x .
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3.50

3.51

Solution

Use the derivative of the natural exponential function, the quotient rule, and the chain rule.

y′ =

⎛
⎝ex

2
· 2⎞⎠x · x − 1 · ex

2

x2 Apply the quotient rule.

=
ex

2 ⎛
⎝2x2 − 1⎞⎠
x2 Simplify.

Find the derivative of h(x) = xe2x.

Example 3.76

Applying the Natural Exponential Function

A colony of mosquitoes has an initial population of 1000. After t days, the population is given by

A(t) = 1000e0.3t. Show that the ratio of the rate of change of the population, A′ (t), to the population, A(t) is

constant.

Solution

First find A′ (t). By using the chain rule, we have A′ (t) = 300e0.3t. Thus, the ratio of the rate of change of the

population to the population is given by

A′ (t) = 300e0.3t

1000e0.3t = 0.3.

The ratio of the rate of change of the population to the population is the constant 0.3.

If A(t) = 1000e0.3t describes the mosquito population after t days, as in the preceding example, what

is the rate of change of A(t) after 4 days?

Derivative of the Logarithmic Function
Now that we have the derivative of the natural exponential function, we can use implicit differentiation to find the derivative
of its inverse, the natural logarithmic function.

Theorem 3.15: The Derivative of the Natural Logarithmic Function

If x > 0 and y = lnx, then

(3.30)dy
dx = 1

x .

More generally, let g(x) be a differentiable function. For all values of x for which g′ (x) > 0, the derivative of
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h(x) = ln ⎛⎝g(x)⎞⎠ is given by

(3.31)h′ (x) = 1
g(x)g′ (x).

Proof

If x > 0 and y = lnx, then ey = x. Differentiating both sides of this equation results in the equation

ey dydx = 1.

Solving for
dy
dx yields

dy
dx = 1

ey
.

Finally, we substitute x = ey to obtain

dy
dx = 1

x .

We may also derive this result by applying the inverse function theorem, as follows. Since y = g(x) = lnx is the inverse

of f (x) = ex, by applying the inverse function theorem we have

dy
dx = 1

f ′ ⎛⎝g(x)⎞⎠
= 1

elnx = 1
x .

Using this result and applying the chain rule to h(x) = ln ⎛⎝g(x)⎞⎠ yields

h′ (x) = 1
g(x)g′ (x).

□

The graph of y = lnx and its derivative
dy
dx = 1

x are shown in Figure 3.35.

Figure 3.35 The function y = lnx is increasing on

(0, +∞). Its derivative y′ = 1
x is greater than zero on

(0, +∞).

Example 3.77

Taking a Derivative of a Natural Logarithm
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3.52

Find the derivative of f (x) = ln ⎛⎝x3 + 3x − 4⎞⎠.

Solution

Use Equation 3.31 directly.

f ′ (x) = 1
x3 + 3x − 4

· ⎛⎝3x2 + 3⎞⎠ Use g(x) = x3 + 3x − 4 in h′ (x) = 1
g(x)g′ (x).

= 3x2 + 3
x3 + 3x − 4

Rewrite.

Example 3.78

Using Properties of Logarithms in a Derivative

Find the derivative of f (x) = ln⎛⎝x
2 sinx

2x + 1
⎞
⎠.

Solution

At first glance, taking this derivative appears rather complicated. However, by using the properties of logarithms
prior to finding the derivative, we can make the problem much simpler.

f (x) = ln⎛⎝x
2 sinx

2x + 1
⎞
⎠ = 2lnx + ln(sinx) − ln(2x + 1) Apply properties of logarithms.

f ′ (x) = 2
x + cotx − 2

2x + 1 Apply sum rule and h′ (x) = 1
g(x)g′ (x).

Differentiate: f (x) = ln(3x + 2)5.

Now that we can differentiate the natural logarithmic function, we can use this result to find the derivatives of y = logb x

and y = bx for b > 0, b ≠ 1.

Theorem 3.16: Derivatives of General Exponential and Logarithmic Functions

Let b > 0, b ≠ 1, and let g(x) be a differentiable function.

i. If, y = logb x, then

(3.32)dy
dx = 1

x lnb.

More generally, if h(x) = logb
⎛
⎝g(x)⎞⎠, then for all values of x for which g(x) > 0,

(3.33)h′ (x) = g′ (x)
g(x) lnb.

ii. If y = bx, then
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(3.34)dy
dx = bx lnb.

More generally, if h(x) = bg(x), then

(3.35)h′ (x) = bg(x)g′(x) lnb.

Proof

If y = logb x, then by = x. It follows that ln(by) = ln x. Thus y ln b = ln x. Solving for y, we have y = lnx
lnb.

Differentiating and keeping in mind that lnb is a constant, we see that

dy
dx = 1

x lnb.

The derivative in Equation 3.33 now follows from the chain rule.

If y = bx, then ln y = x lnb. Using implicit differentiation, again keeping in mind that lnb is constant, it follows that

1
y
dy
dx = lnb. Solving for

dy
dx and substituting y = bx, we see that

dy
dx = y lnb = bx lnb.

The more general derivative (Equation 3.35) follows from the chain rule.

□

Example 3.79

Applying Derivative Formulas

Find the derivative of h(x) = 3x

3x + 2
.

Solution

Use the quotient rule and Derivatives of General Exponential and Logarithmic Functions.

h′ (x) = 3x ln3(3x + 2) − 3x ln3(3x)
(3x + 2)2 Apply the quotient rule.

= 2 · 3x ln3
(3x + 2)2 Simplify.

Example 3.80

Finding the Slope of a Tangent Line

Find the slope of the line tangent to the graph of y = log2 (3x + 1) at x = 1.

Solution
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3.53

To find the slope, we must evaluate
dy
dx at x = 1. Using Equation 3.33, we see that

dy
dx = 3

(3x + 1)ln2.

By evaluating the derivative at x = 1, we see that the tangent line has slope

dy
dx |x = 1

= 3
4ln2 = 3

ln16.

Find the slope for the line tangent to y = 3x at x = 2.

Logarithmic Differentiation
At this point, we can take derivatives of functions of the form y = ⎛

⎝g(x)⎞⎠n for certain values of n, as well as functions

of the form y = bg(x), where b > 0 and b ≠ 1. Unfortunately, we still do not know the derivatives of functions such as

y = xx or y = xπ. These functions require a technique called logarithmic differentiation, which allows us to differentiate

any function of the form h(x) = g(x) f (x). It can also be used to convert a very complex differentiation problem into a

simpler one, such as finding the derivative of y = x 2x + 1
ex sin3 x

. We outline this technique in the following problem-solving

strategy.

Problem-Solving Strategy: Using Logarithmic Differentiation

1. To differentiate y = h(x) using logarithmic differentiation, take the natural logarithm of both sides of the

equation to obtain ln y = ln ⎛⎝h(x)⎞⎠.

2. Use properties of logarithms to expand ln ⎛⎝h(x)⎞⎠ as much as possible.

3. Differentiate both sides of the equation. On the left we will have 1
y
dy
dx.

4. Multiply both sides of the equation by y to solve for
dy
dx.

5. Replace y by h(x).

Example 3.81

Using Logarithmic Differentiation

Find the derivative of y = ⎛⎝2x4 + 1⎞⎠
tanx

.

328 Chapter 3 | Derivatives

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12



Solution

Use logarithmic differentiation to find this derivative.

lny = ln⎛⎝2x4 + 1⎞⎠
tanx

Step 1. Take the natural logarithm of both sides.

lny = tanx ln ⎛⎝2x4 + 1⎞⎠ Step 2. Expand using properties of logarithms.

1
y
dy
dx = sec2 x ln ⎛⎝2x4 + 1⎞⎠+ 8x3

2x4 + 1
· tanx

Step 3. Differentiate both sides. Use the
product rule on the right.

dy
dx = y · ⎛⎝sec2 x ln ⎛⎝2x4 + 1⎞⎠+ 8x3

2x4 + 1
· tanx⎞⎠ Step 4. Multiply by y on both sides.

dy
dx = ⎛

⎝2x4 + 1⎞⎠
tanx⎛
⎝sec2 x ln ⎛⎝2x4 + 1⎞⎠+ 8x3

2x4 + 1
· tanx⎞⎠ Step 5. Substitute y = ⎛⎝2x4 + 1⎞⎠

tanx
.

Example 3.82

Using Logarithmic Differentiation

Find the derivative of y = x 2x + 1
ex sin3 x

.

Solution

This problem really makes use of the properties of logarithms and the differentiation rules given in this chapter.

lny = ln x 2x + 1
ex sin3 x

Step 1. Take the natural logarithm of both sides.

lny = lnx + 1
2 ln(2x + 1) − x lne − 3lnsinx Step 2. Expand using properties of logarithms.

1
y
dy
dx = 1

x + 1
2x + 1 − 1 − 3cosx

sinx Step 3. Differentiate both sides.

dy
dx = y⎛⎝1x + 1

2x + 1 − 1 − 3cotx⎞⎠ Step 4. Multiply by y on both sides.

dy
dx = x 2x + 1

ex sin3 x
⎛
⎝1x + 1

2x + 1 − 1 − 3cotx⎞⎠ Step 5. Substitute y = x 2x + 1
ex sin3 x

.

Example 3.83

Extending the Power Rule

Find the derivative of y = xr where r is an arbitrary real number.

Solution

The process is the same as in Example 3.82, though with fewer complications.
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3.54

3.55

lny = lnxr Step 1. Take the natural logarithm of both sides.
lny = r lnx Step 2. Expand using properties of logarithms.

1
y
dy
dx = r1

x Step 3. Differentiate both sides.

dy
dx = yrx Step 4. Multiply by y on both sides.

dy
dx = xr rx Step 5. Substitute y = xr.

dy
dx = rxr − 1 Simplify.

Use logarithmic differentiation to find the derivative of y = xx.

Find the derivative of y = (tanx)π.
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