
2.3 | The Limit Laws

Learning Objectives
2.3.1 Recognize the basic limit laws.

2.3.2 Use the limit laws to evaluate the limit of a function.

2.3.3 Evaluate the limit of a function by factoring.

2.3.4 Use the limit laws to evaluate the limit of a polynomial or rational function.

2.3.5 Evaluate the limit of a function by factoring or by using conjugates.

2.3.6 Evaluate the limit of a function by using the squeeze theorem.

In the previous section, we evaluated limits by looking at graphs or by constructing a table of values. In this section, we
establish laws for calculating limits and learn how to apply these laws. In the Student Project at the end of this section, you
have the opportunity to apply these limit laws to derive the formula for the area of a circle by adapting a method devised by
the Greek mathematician Archimedes. We begin by restating two useful limit results from the previous section. These two
results, together with the limit laws, serve as a foundation for calculating many limits.

Evaluating Limits with the Limit Laws
The first two limit laws were stated in Two Important Limits and we repeat them here. These basic results, together with
the other limit laws, allow us to evaluate limits of many algebraic functions.

Theorem 2.4: Basic Limit Results

For any real number a and any constant c,

i. (2.14)limx → ax = a

ii. (2.15)limx → ac = c

Example 2.13

Evaluating a Basic Limit

Evaluate each of the following limits using Basic Limit Results.

a. lim
x → 2

x

b. lim
x → 2

5

Solution

a. The limit of x as x approaches a is a: lim
x → 2

x = 2.

b. The limit of a constant is that constant: lim
x → 2

5 = 5.

We now take a look at the limit laws, the individual properties of limits. The proofs that these laws hold are omitted here.
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Theorem 2.5: Limit Laws

Let f (x) and g(x) be defined for all x ≠ a over some open interval containing a. Assume that L and M are real

numbers such that limx → a f (x) = L and limx → ag(x) = M. Let c be a constant. Then, each of the following statements

holds:

Sum law for limits: limx → a
⎛
⎝ f (x) + g(x)⎞⎠ = limx → a f (x) + limx → ag(x) = L + M

Difference law for limits: limx → a
⎛
⎝ f (x) − g(x)⎞⎠ = limx → a f (x) − limx → ag(x) = L − M

Constant multiple law for limits: limx → ac f (x) = c · limx → a f (x) = cL

Product law for limits: limx → a
⎛
⎝ f (x) · g(x)⎞⎠ = limx → a f (x) · limx → ag(x) = L ·M

Quotient law for limits: limx → a
f (x)
g(x) =

limx → a f (x)
limx → ag(x) = L

M for M ≠ 0

Power law for limits: limx → a
⎛
⎝ f (x)⎞⎠n = ⎛⎝ limx → a f (x)⎞⎠

n
= Ln for every positive integer n.

Root law for limits: limx → a f (x)n = limx → a f (x)n = Ln for all L if n is odd and for L ≥ 0 if n is even and f ⎛⎝x⎞⎠ ≥ 0 .

We now practice applying these limit laws to evaluate a limit.

Example 2.14

Evaluating a Limit Using Limit Laws

Use the limit laws to evaluate lim
x → −3

(4x + 2).

Solution

Let’s apply the limit laws one step at a time to be sure we understand how they work. We need to keep in mind
the requirement that, at each application of a limit law, the new limits must exist for the limit law to be applied.

lim
x → −3

(4x + 2) = lim
x → −3

4x + lim
x → −3

2 Apply the sum law.

= 4 · lim
x → −3

x + lim
x → −3

2 Apply the constant multiple law.

= 4 · (−3) + 2 = −10. Apply the basic limit results and simplify.

Example 2.15

Using Limit Laws Repeatedly

Use the limit laws to evaluate lim
x → 2

2x2 − 3x + 1
x3 + 4

.

Solution

Chapter 2 | Limits 161



2.11

To find this limit, we need to apply the limit laws several times. Again, we need to keep in mind that as we rewrite
the limit in terms of other limits, each new limit must exist for the limit law to be applied.

lim
x → 2

2x2 − 3x + 1
x3 + 4

=
lim
x → 2

⎛
⎝2x2 − 3x + 1⎞⎠

lim
x → 2

⎛
⎝x3 + 4⎞⎠

Apply the quotient law, making sure that. (2)3 + 4 ≠ 0

=
2 · lim

x → 2
x2 − 3 · lim

x → 2
x + lim

x → 2
1

lim
x → 2

x3 + lim
x → 2

4
Apply the sum law and constant multiple law.

=
2 · ⎛⎝ lim

x → 2
x⎞⎠

2
− 3 · lim

x → 2
x + lim

x → 2
1

⎛
⎝ lim
x → 2

x⎞⎠
3

+ lim
x → 2

4
Apply the power law.

= 2(4) − 3(2) + 1
(2)3 + 4

= 1
4. Apply the basic limit laws and simplify.

Use the limit laws to evaluate lim
x → 6

(2x − 1) x + 4. In each step, indicate the limit law applied.

Limits of Polynomial and Rational Functions
By now you have probably noticed that, in each of the previous examples, it has been the case that limx → a f (x) = f (a). This

is not always true, but it does hold for all polynomials for any choice of a and for all rational functions at all values of a for
which the rational function is defined.

Theorem 2.6: Limits of Polynomial and Rational Functions

Let p(x) and q(x) be polynomial functions. Let a be a real number. Then,

limx → ap(x) = p(a)

limx → a
p(x)
q(x) = p(a)

q(a) when q(a) ≠ 0.

To see that this theorem holds, consider the polynomial p(x) = cn xn + cn − 1 x
n − 1 + ⋯ + c1 x + c0. By applying the

sum, constant multiple, and power laws, we end up with

limx → ap(x) = limx → a
⎛
⎝cn xn + cn − 1 x

n − 1 + ⋯ + c1 x + c0
⎞
⎠

= cn
⎛
⎝ limx → ax

⎞
⎠
n

+ cn − 1
⎛
⎝ limx → ax

⎞
⎠
n − 1

+ ⋯ + c1
⎛
⎝ limx → ax

⎞
⎠+ limx → ac0

= cnan + cn − 1a
n − 1 + ⋯ + c1a + c0

= p(a).

It now follows from the quotient law that if p(x) and q(x) are polynomials for which q(a) ≠ 0, then

limx → a
p(x)
q(x) = p(a)

q(a) .

Example 2.16 applies this result.
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Example 2.16

Evaluating a Limit of a Rational Function

Evaluate the lim
x → 3

2x2 − 3x + 1
5x + 4 .

Solution

Since 3 is in the domain of the rational function f (x) = 2x2 − 3x + 1
5x + 4 , we can calculate the limit by substituting

3 for x into the function. Thus,

lim
x → 3

2x2 − 3x + 1
5x + 4 = 10

19.

Evaluate lim
x → −2

⎛
⎝3x3 − 2x + 7⎞⎠.

Additional Limit Evaluation Techniques
As we have seen, we may evaluate easily the limits of polynomials and limits of some (but not all) rational functions by
direct substitution. However, as we saw in the introductory section on limits, it is certainly possible for limx → a f (x) to exist

when f (a) is undefined. The following observation allows us to evaluate many limits of this type:

If for all x ≠ a, f (x) = g(x) over some open interval containing a, then limx → a f (x) = limx → ag(x).

To understand this idea better, consider the limit lim
x → 1

x2 − 1
x − 1 .

The function

f (x) = x2 − 1
x − 1

= (x − 1)(x + 1)
x − 1

and the function g(x) = x + 1 are identical for all values of x ≠ 1. The graphs of these two functions are shown in Figure

2.24.
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Figure 2.24 The graphs of f (x) and g(x) are identical for all x ≠ 1. Their limits at 1 are equal.

We see that

lim
x → 1

x2 − 1
x − 1 = lim

x → 1
(x − 1)(x + 1)

x − 1

= lim
x → 1

(x + 1)

= 2.

The limit has the form limx → a
f (x)
g(x) , where limx → a f (x) = 0 and limx → ag(x) = 0. (In this case, we say that f (x)/g(x) has the

indeterminate form 0/0.) The following Problem-Solving Strategy provides a general outline for evaluating limits of this

type.

Problem-Solving Strategy: Calculating a Limit When f(x)/g(x) has the Indeterminate Form 0/0

1. First, we need to make sure that our function has the appropriate form and cannot be evaluated immediately
using the limit laws.

2. We then need to find a function that is equal to h(x) = f (x)/g(x) for all x ≠ a over some interval containing

a. To do this, we may need to try one or more of the following steps:

a. If f (x) and g(x) are polynomials, we should factor each function and cancel out any common factors.

b. If the numerator or denominator contains a difference involving a square root, we should try
multiplying the numerator and denominator by the conjugate of the expression involving the square
root.

c. If f (x)/g(x) is a complex fraction, we begin by simplifying it.

3. Last, we apply the limit laws.

The next examples demonstrate the use of this Problem-Solving Strategy. Example 2.17 illustrates the factor-and-cancel
technique; Example 2.18 shows multiplying by a conjugate. In Example 2.19, we look at simplifying a complex fraction.
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Example 2.17

Evaluating a Limit by Factoring and Canceling

Evaluate lim
x → 3

x2 − 3x
2x2 − 5x − 3

.

Solution

Step 1. The function f (x) = x2 − 3x
2x2 − 5x − 3

is undefined for x = 3. In fact, if we substitute 3 into the function

we get 0/0, which is undefined. Factoring and canceling is a good strategy:

lim
x → 3

x2 − 3x
2x2 − 5x − 3

= lim
x → 3

x(x − 3)
(x − 3)(2x + 1)

Step 2. For all x ≠ 3, x2 − 3x
2x2 − 5x − 3

= x
2x + 1. Therefore,

lim
x → 3

x(x − 3)
(x − 3)(2x + 1) = lim

x → 3
x

2x + 1.

Step 3. Evaluate using the limit laws:

lim
x → 3

x
2x + 1 = 3

7.

Evaluate lim
x → −3

x2 + 4x + 3
x2 − 9

.

Example 2.18

Evaluating a Limit by Multiplying by a Conjugate

Evaluate lim
x → −1

x + 2 − 1
x + 1 .

Solution

Step 1. x + 2 − 1
x + 1 has the form 0/0 at −1. Let’s begin by multiplying by x + 2 + 1, the conjugate of

x + 2 − 1, on the numerator and denominator:

lim
x → −1

x + 2 − 1
x + 1 = lim

x → −1
x + 2 − 1
x + 1 · x + 2 + 1

x + 2 + 1
.

Step 2. We then multiply out the numerator. We don’t multiply out the denominator because we are hoping that
the (x + 1) in the denominator cancels out in the end:

= lim
x → −1

x + 1
(x + 1)⎛⎝ x + 2 + 1⎞⎠

.
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Step 3. Then we cancel:

= lim
x → −1

1
x + 2 + 1

.

Step 4. Last, we apply the limit laws:

lim
x → −1

1
x + 2 + 1

= 1
2.

Evaluate lim
x → 5

x − 1 − 2
x − 5 .

Example 2.19

Evaluating a Limit by Simplifying a Complex Fraction

Evaluate lim
x → 1

1
x + 1 − 1

2
x − 1 .

Solution

Step 1.
1

x + 1 − 1
2

x − 1 has the form 0/0 at 1. We simplify the algebraic fraction by multiplying by

2(x + 1)/2(x + 1) :

lim
x → 1

1
x + 1 − 1

2
x − 1 = lim

x → 1

1
x + 1 − 1

2
x − 1 · 2(x + 1)

2(x + 1).

Step 2. Next, we multiply through the numerators. Do not multiply the denominators because we want to be able
to cancel the factor (x − 1):

= lim
x → 1

2 − (x + 1)
2(x − 1)(x + 1).

Step 3. Then, we simplify the numerator:

= lim
x → 1

−x + 1
2(x − 1)(x + 1).

Step 4. Now we factor out −1 from the numerator:

= lim
x → 1

−(x − 1)
2(x − 1)(x + 1).

Step 5. Then, we cancel the common factors of (x − 1):

= lim
x → 1

−1
2(x + 1).

Step 6. Last, we evaluate using the limit laws:

lim
x → 1

−1
2(x + 1) = − 1

4.
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2.15

2.16

Evaluate lim
x → −3

1
x + 2 + 1
x + 3 .

Example 2.20 does not fall neatly into any of the patterns established in the previous examples. However, with a little
creativity, we can still use these same techniques.

Example 2.20

Evaluating a Limit When the Limit Laws Do Not Apply

Evaluate lim
x → 0
⎛
⎝1x + 5

x(x − 5)
⎞
⎠.

Solution

Both 1/x and 5/x(x − 5) fail to have a limit at zero. Since neither of the two functions has a limit at zero, we

cannot apply the sum law for limits; we must use a different strategy. In this case, we find the limit by performing
addition and then applying one of our previous strategies. Observe that

1
x + 5

x(x − 5) = x − 5 + 5
x(x − 5)

= x
x(x − 5).

Thus,

lim
x → 0
⎛
⎝1x + 5

x(x − 5)
⎞
⎠ = lim

x → 0
x

x(x − 5)

= lim
x → 0

1
x − 5

= − 1
5.

Evaluate lim
x → 3
⎛
⎝ 1
x − 3 − 4

x2 − 2x − 3
⎞
⎠.

Let’s now revisit one-sided limits. Simple modifications in the limit laws allow us to apply them to one-sided limits. For
example, to apply the limit laws to a limit of the form lim

x → a− h(x), we require the function h(x) to be defined over an

open interval of the form (b, a); for a limit of the form lim
x → a+

h(x), we require the function h(x) to be defined over an

open interval of the form (a, c). Example 2.21 illustrates this point.

Example 2.21

Evaluating a One-Sided Limit Using the Limit Laws

Evaluate each of the following limits, if possible.

a. lim
x → 3− x − 3
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b. lim
x → 3+

x − 3

Solution

Figure 2.25 illustrates the function f (x) = x − 3 and aids in our understanding of these limits.

Figure 2.25 The graph shows the function f (x) = x − 3.

a. The function f (x) = x − 3 is defined over the interval [3, +∞). Since this function is not defined to

the left of 3, we cannot apply the limit laws to compute lim
x → 3− x − 3. In fact, since f (x) = x − 3 is

undefined to the left of 3, lim
x → 3− x − 3 does not exist.

b. Since f (x) = x − 3 is defined to the right of 3, the limit laws do apply to lim
x → 3+

x − 3. By applying

these limit laws we obtain lim
x → 3+

x − 3 = 0.

In Example 2.22 we look at one-sided limits of a piecewise-defined function and use these limits to draw a conclusion
about a two-sided limit of the same function.

Example 2.22

Evaluating a Two-Sided Limit Using the Limit Laws

For f (x) =
⎧
⎩
⎨4x − 3 if x < 2
(x − 3)2 if x ≥ 2

, evaluate each of the following limits:

a. lim
x → 2− f (x)

b. lim
x → 2+

f (x)

c. lim
x → 2

f (x)

Solution

Figure 2.26 illustrates the function f (x) and aids in our understanding of these limits.
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2.17

Figure 2.26 This graph shows a function f (x).

a. Since f (x) = 4x − 3 for all x in (−∞, 2), replace f (x) in the limit with 4x − 3 and apply the limit

laws:

lim
x → 2− f (x) = lim

x → 2− (4x − 3) = 5.

b. Since f (x) = (x − 3)2 for all x in (2, +∞), replace f (x) in the limit with (x − 3)2 and apply the

limit laws:

lim
x → 2+

f (x) = lim
x → 2+

(x − 3)2 = 1.

c. Since lim
x → 2− f (x) = 5 and lim

x → 2+
f (x) = 1, we conclude that lim

x → 2
f (x) does not exist.

Graph f (x) =
⎧
⎩
⎨

−x − 2 if x < −1
2 if x = −1
x3 if x > −1

and evaluate lim
x → −1− f (x).

We now turn our attention to evaluating a limit of the form limx → a
f (x)
g(x) , where limx → a f (x) = K, where K ≠ 0 and

limx → ag(x) = 0. That is, f (x)/g(x) has the form K/0, K ≠ 0 at a.

Example 2.23

Evaluating a Limit of the Form K/0, K ≠ 0 Using the Limit Laws

Evaluate lim
x → 2−

x − 3
x2 − 2x

.

Solution

Step 1. After substituting in x = 2, we see that this limit has the form −1/0. That is, as x approaches 2 from the
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left, the numerator approaches −1; and the denominator approaches 0. Consequently, the magnitude of x − 3
x(x − 2)

becomes infinite. To get a better idea of what the limit is, we need to factor the denominator:

lim
x → 2−

x − 3
x2 − 2x

= lim
x → 2−

x − 3
x(x − 2).

Step 2. Since x − 2 is the only part of the denominator that is zero when 2 is substituted, we then separate

1/(x − 2) from the rest of the function:

= lim
x → 2−

x − 3
x · 1

x − 2.

Step 3. lim
x → 2−

x − 3
x = − 1

2 and lim
x → 2−

1
x − 2 = −∞. Therefore, the product of (x − 3)/x and 1/(x − 2) has

a limit of +∞:

lim
x → 2−

x − 3
x2 − 2x

= +∞.

Evaluate lim
x → 1

x + 2
(x − 1)2.

The Squeeze Theorem
The techniques we have developed thus far work very well for algebraic functions, but we are still unable to evaluate limits
of very basic trigonometric functions. The next theorem, called the squeeze theorem, proves very useful for establishing
basic trigonometric limits. This theorem allows us to calculate limits by “squeezing” a function, with a limit at a point a that
is unknown, between two functions having a common known limit at a. Figure 2.27 illustrates this idea.

Figure 2.27 The Squeeze Theorem applies when
f (x) ≤ g(x) ≤ h(x) and limx → a f (x) = limx → ah(x).
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Theorem 2.7: The Squeeze Theorem

Let f (x), g(x), and h(x) be defined for all x ≠ a over an open interval containing a. If

f (x) ≤ g(x) ≤ h(x)

for all x ≠ a in an open interval containing a and

limx → a f (x) = L = limx → ah(x)

where L is a real number, then limx → ag(x) = L.

Example 2.24

Applying the Squeeze Theorem

Apply the squeeze theorem to evaluate lim
x → 0

xcosx.

Solution

Because −1 ≤ cosx ≤ 1 for all x, we have − |x| ≤ xcosx ≤ |x| . Since lim
x → 0

( − |x|) = 0 = lim
x → 0

|x|, from the

squeeze theorem, we obtain lim
x → 0

xcosx = 0. The graphs of f (x) = − |x|, g(x) = xcosx, and h(x) = |x| are

shown in Figure 2.28.

Figure 2.28 The graphs of f (x), g(x), and h(x) are shown

around the point x = 0.

Use the squeeze theorem to evaluate lim
x → 0

x2 sin1
x .

We now use the squeeze theorem to tackle several very important limits. Although this discussion is somewhat lengthy,
these limits prove invaluable for the development of the material in both the next section and the next chapter. The first of
these limits is lim

θ → 0
sinθ. Consider the unit circle shown in Figure 2.29. In the figure, we see that sinθ is the y-coordinate

on the unit circle and it corresponds to the line segment shown in blue. The radian measure of angle θ is the length of the
arc it subtends on the unit circle. Therefore, we see that for 0 < θ < π

2, 0 < sinθ < θ.
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Figure 2.29 The sine function is shown as a line on the unit
circle.

Because lim
θ → 0+

0 = 0 and lim
θ → 0+

θ = 0, by using the squeeze theorem we conclude that

lim
θ → 0+

sinθ = 0.

To see that lim
θ → 0− sinθ = 0 as well, observe that for −π

2 < θ < 0, 0 < −θ < π
2 and hence, 0 < sin(−θ) < −θ.

Consequently, 0 < − sinθ < −θ. It follows that 0 > sinθ > θ. An application of the squeeze theorem produces the

desired limit. Thus, since lim
θ → 0+

sinθ = 0 and lim
θ → 0− sinθ = 0,

(2.16)lim
θ → 0

sinθ = 0.

Next, using the identity cosθ = 1 − sin2 θ for −π
2 < θ < π

2, we see that

(2.17)lim
θ → 0

cosθ = lim
θ → 0

1 − sin2 θ = 1.

We now take a look at a limit that plays an important role in later chapters—namely, lim
θ → 0

sinθ
θ . To evaluate this limit,

we use the unit circle in Figure 2.30. Notice that this figure adds one additional triangle to Figure 2.30. We see that the
length of the side opposite angle θ in this new triangle is tanθ. Thus, we see that for 0 < θ < π

2, sinθ < θ < tanθ.
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Figure 2.30 The sine and tangent functions are shown as lines
on the unit circle.

By dividing by sinθ in all parts of the inequality, we obtain

1 < θ
sinθ < 1

cosθ .

Equivalently, we have

1 > sinθ
θ > cosθ.

Since lim
θ → 0+

1 = 1 = lim
θ → 0+

cosθ, we conclude that lim
θ → 0+

sinθ
θ = 1. By applying a manipulation similar to that used

in demonstrating that lim
θ → 0− sinθ = 0, we can show that lim

θ → 0−
sinθ
θ = 1. Thus,

(2.18)lim
θ → 0

sinθ
θ = 1.

In Example 2.25 we use this limit to establish lim
θ → 0

1 − cosθ
θ = 0. This limit also proves useful in later chapters.

Example 2.25

Evaluating an Important Trigonometric Limit

Evaluate lim
θ → 0

1 − cosθ
θ .

Solution

In the first step, we multiply by the conjugate so that we can use a trigonometric identity to convert the cosine in
the numerator to a sine:
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2.20

lim
θ → 0

1 − cosθ
θ = lim

θ → 0
1 − cosθ

θ · 1 + cosθ
1 + cosθ

= lim
θ → 0

1 − cos2 θ
θ(1 + cosθ)

= lim
θ → 0

sin2 θ
θ(1 + cosθ)

= lim
θ → 0

sinθ
θ · sinθ

1 + cosθ
= 1 · 0

2 = 0.

Therefore,

lim
θ → 0

1 − cosθ
θ = 0.

Evaluate lim
θ → 0

1 − cosθ
sinθ .
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Deriving the Formula for the Area of a Circle

Some of the geometric formulas we take for granted today were first derived by methods that anticipate some of the
methods of calculus. The Greek mathematician Archimedes (ca. 287−212; BCE) was particularly inventive, using
polygons inscribed within circles to approximate the area of the circle as the number of sides of the polygon increased.
He never came up with the idea of a limit, but we can use this idea to see what his geometric constructions could have
predicted about the limit.

We can estimate the area of a circle by computing the area of an inscribed regular polygon. Think of the regular
polygon as being made up of n triangles. By taking the limit as the vertex angle of these triangles goes to zero, you can
obtain the area of the circle. To see this, carry out the following steps:

1. Express the height h and the base b of the isosceles triangle in Figure 2.31 in terms of θ and r.

Figure 2.31

2. Using the expressions that you obtained in step 1, express the area of the isosceles triangle in terms of θ and r.
(Substitute (1 /2)sinθ for sin(θ /2)cos(θ /2) in your expression.)

3. If an n-sided regular polygon is inscribed in a circle of radius r, find a relationship between θ and n. Solve this
for n. Keep in mind there are 2π radians in a circle. (Use radians, not degrees.)

4. Find an expression for the area of the n-sided polygon in terms of r and θ.

5. To find a formula for the area of the circle, find the limit of the expression in step 4 as θ goes to zero. (Hint:

lim
θ → 0

(sinθ)
θ = 1).

The technique of estimating areas of regions by using polygons is revisited in Introduction to Integration.
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