2.2 EXERCISES

For the following exercises, consider the function $f(x) = \frac{x^2 - 1}{|x - 1|}$.

	x	f(x)	x	f(x)
	0.9	a.	1.1	e.
	0.99	b.	1.01	f.
	0.999	с.	1.001	g.
-	0.9999	d.	1.0001	h.

30. **[T]** Complete the following table for the function. Round your solutions to four decimal places.

31. What do your results in the preceding exercise indicate about the two-sided limit $\lim_{x \to 1} f(x)$? Explain your response.

For the following exercises, consider the function $f(x) = (1 + x)^{1/x}$.

32. **[T]** Make a table showing the values of *f* for x = -0.01, -0.001, -0.0001, -0.00001 and for x = 0.01, 0.001, 0.0001, 0.00001. Round your solutions to five decimal places.

x	f(x)		x	<i>f</i> (<i>x</i>)
-0.01	a.		0.01	e.
-0.001	b.		0.001	f.
-0.0001	с.		0.0001	g.
-0.00001	d.	-	0.00001	h.

33. What does the table of values in the preceding exercise indicate about the function $f(x) = (1 + x)^{1/x}$?

34. To which mathematical constant does the limit in the preceding exercise appear to be getting closer?

In the following exercises, use the given values to set up a

table to evaluate the limits. Round your solutions to eight decimal places.

35. **[T]**
$$\lim_{x \to 0} \frac{\sin 2x}{x}$$
; ±0.1, ±0.01, ±0.001, ±0.001

x	$\frac{\sin 2x}{x}$	x	$\frac{\sin 2x}{x}$
-0.1	a.	0.1	e.
-0.01	b.	0.01	f.
-0.001	c.	0.001	g.
-0.0001	d.	0.0001	h.

36.	[T]	$\lim_{x \to \infty} \frac{\sin 3x}{x}$	$\pm 0.1, \pm 0.01, \pm 0.001, \pm 0.0001$
-----	-----	---	--

x	$\frac{\sin 3x}{x}$	x	$\frac{\sin 3x}{x}$
-0.1	a.	0.1	e.
-0.01	b.	0.01	f.
-0.001	c.	0.001	g.
-0.0001	d.	0.0001	h.

37. Use the preceding two exercises to conjecture (guess) the value of the following limit: $\lim_{x \to 0} \frac{\sin ax}{x}$ for *a*, a positive real value.

[T] In the following exercises, set up a table of values to find the indicated limit. Round to eight digits.

38. $\lim_{x \to 2_x} \frac{1}{x}$	$\frac{x^2 - 4}{x^2 + x - 6}$			41. $\lim_{z \to 0} \frac{z}{z^2}$	$\frac{z-1}{(z+3)}$			
x	$\frac{x^2-4}{x^2+x-6}$		x	$\frac{x^2-4}{x^2+x-6}$	Z	$\frac{z-1}{z^2(z+3)}$	Z	$\frac{z-1}{z^2(z+3)}$
1.9	a.		2.1	e.	-0.1	a.	0.1	e.
1.99	b.		2.01	f.	-0.01	b.	0.01	f.
1.999	с.		2.001	g.	-0.001	с.	0.001	g.
1.9999	d.		2.0001	h.	-0.0001	d.	0.0001	h.

42.

39. $\lim_{x \to 1} (1 - 2x)$

x	1-2x	x	1 - 2x
0.9	a.	1.1	е.
0.99	b.	1.01	f.
0.999	с.	1.001	g.
0.9999	d.	1.0001	h.

$$\lim_{t \to 0^+} \frac{\cos t}{t}$$

t	$\frac{\cos t}{t}$
0.1	a.
0.01	b.
0.001	с.
0.0001	d.

40.
$$\lim_{x \to 0} \frac{5}{1 - e^{1/x}}$$

x	$\frac{5}{1-e^{1/x}}$	x	$\frac{5}{1-e^{1/x}}$
-0.1	a.	0.1	e.
-0.01	b.	0.01	f.
-0.001	с.	0.001	g.
-0.0001	d.	0.0001	h.

4	43. $\lim_{x \to 2} \frac{1 - \frac{2}{x}}{x^2 - 4}$					
	x	$\frac{1-\frac{2}{x}}{x^2-4}$		x	$\frac{1-\frac{2}{x}}{x^2-4}$	
	1.9	a.		2.1	e.	
	1.99	b.		2.01	f.	
	1.999	c.		2.001	g.	
	1.9999	d.		2.0001	h.	

[T] In the following exercises, set up a table of values and round to eight significant digits. Based on the table of values, make a guess about what the limit is. Then, use a

calculator to graph the function and determine the limit. Was the conjecture correct? If not, why does the method of tables fail?

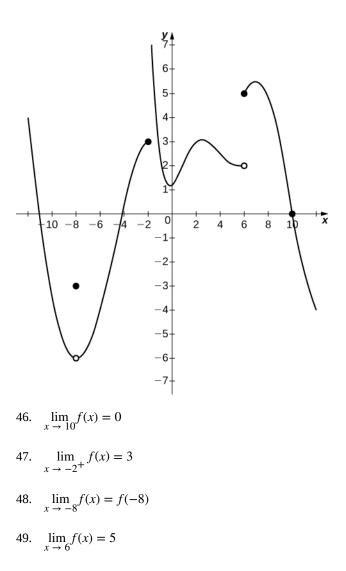
44. $\lim_{\theta \to 0} \sin\left(\frac{\pi}{\theta}\right)$

$\theta \to 0$ (θ)					
θ	$\sin\left(\frac{\pi}{\theta}\right)$		θ	$\sin\left(\frac{\pi}{\theta}\right)$	
-0.1	a.		0.1	e.	
-0.01	b.		0.01	f.	
-0.001	c.		0.001	g.	
-0.0001	d.		0.0001	h.	

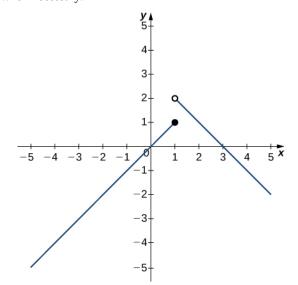
45. $\lim_{\alpha \to 0^+} \frac{1}{\alpha} \cos\left(\frac{\pi}{\alpha}\right)$

a	$\frac{1}{\alpha}\cos\left(\frac{\pi}{\alpha}\right)$
0.1	a.
0.01	b.
0.001	с.
0.0001	d.

In the following exercises, consider the graph of the function y = f(x) shown here. Which of the statements about y = f(x) are true and which are false? Explain why a statement is false.



In the following exercises, use the following graph of the function y = f(x) to find the values, if possible. Estimate when necessary.



50.
$$\lim_{x \to 1^{-}} f(x)$$

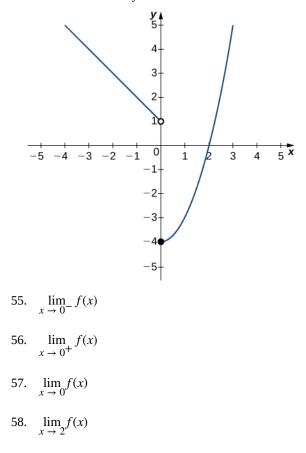
51.
$$\lim_{x \to 1^{+}} f(x)$$

52. $\lim_{x \to 1} f(x)$

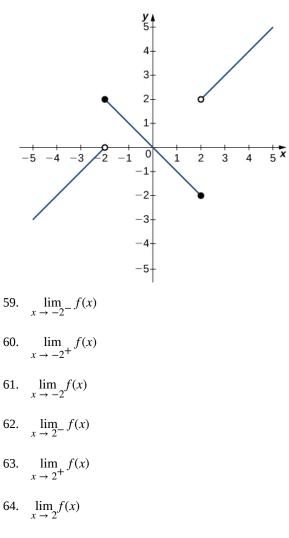
53.
$$\lim_{x \to 2} f(x)$$

54.
$$f(1)$$

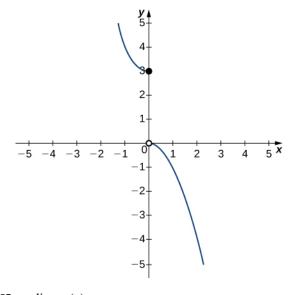
In the following exercises, use the graph of the function y = f(x) shown here to find the values, if possible. Estimate when necessary.



In the following exercises, use the graph of the function y = f(x) shown here to find the values, if possible. Estimate when necessary.



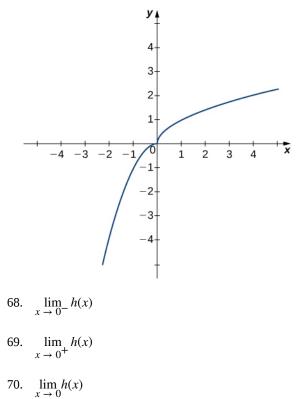
In the following exercises, use the graph of the function y = g(x) shown here to find the values, if possible. Estimate when necessary.



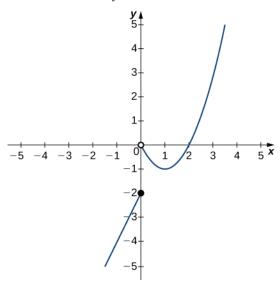
66.
$$\lim_{x \to 0^+} g(x)$$

$$67. \quad \lim_{x \to 0} g(x)$$

In the following exercises, use the graph of the function y = h(x) shown here to find the values, if possible. Estimate when necessary.



In the following exercises, use the graph of the function y = f(x) shown here to find the values, if possible. Estimate when necessary.



71.
$$\lim_{x \to 0^{-}} f(x)$$

72.
$$\lim_{x \to 0^{+}} f(x)$$

73.
$$\lim_{x \to 0} f(x)$$

74.
$$\lim_{x \to 1} f(x)$$

75.
$$\lim_{x \to 2} f(x)$$

In the following exercises, sketch the graph of a function with the given properties.

76.

$$\lim_{x \to 2} f(x) = 1, \lim_{x \to 4^{-}} f(x) = 3, \lim_{x \to 4^{+}} f(x) = 6, f(4) \text{ is}$$
not defined.

77.
$$\lim_{x \to -\infty} f(x) = 0, \quad \lim_{x \to -1^{-}} f(x) = -\infty,$$
$$\lim_{x \to -1^{+}} f(x) = \infty, \quad \lim_{x \to 0} f(x) = f(0), \quad f(0) = 1, \quad \lim_{x \to \infty} f(x) = -\infty$$

78.

78.
$$\lim_{x \to -\infty} f(x) = 2, \lim_{x \to 3^{-}} f(x) = -\infty,$$
$$\lim_{x \to 3^{+}} f(x) = \infty, \lim_{x \to \infty} f(x) = 2, \ f(0) = \frac{-1}{3}$$

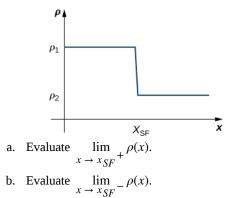
79.
$$\lim_{x \to -\infty} f(x) = 2, \ \lim_{x \to -2} f(x) = -\infty,$$
$$\lim_{x \to \infty} f(x) = 2, \ f(0) = 0$$

80.

$$\lim_{x \to -\infty} f(x) = 0, \lim_{x \to -1^{-}} f(x) = \infty, \lim_{x \to -1^{+}} f(x) = -\infty,$$

$$f(0) = -1, \lim_{x \to 1^{-}} f(x) = -\infty, \lim_{x \to 1^{+}} f(x) = \infty, \lim_{x \to \infty} f(x) = 0$$

81. Shock waves arise in many physical applications, ranging from supernovas to detonation waves. A graph of the density of a shock wave with respect to distance, *x*, is shown here. We are mainly interested in the location of the front of the shock, labeled $x_{\rm SF}$ in the diagram.



c. Evaluate $\lim_{x \to x_{SF}} \rho(x)$. Explain the physical

meanings behind your answers.

82. A track coach uses a camera with a fast shutter to estimate the position of a runner with respect to time. A table of the values of position of the athlete versus time is given here, where *x* is the position in meters of the runner and *t* is time in seconds. What is $\lim_{t \to 2} x(t)$? What does it

mean physically?

t (sec)	<i>x</i> (m)
1.75	4.5
1.95	6.1
1.99	6.42
2.01	6.58
2.05	6.9
2.25	8.5