Chapter 2 | Limits 191

2.4 EXERCISES

For the following exercises, determine the point(s), if any, at which each function is discontinuous. Classify any discontinuity as jump, removable, infinite, or other.

131.
$$f(x) = \frac{1}{\sqrt{x}}$$

132.
$$f(x) = \frac{2}{x^2 + 1}$$

133.
$$f(x) = \frac{x}{x^2 - x}$$

134.
$$g(t) = t^{-1} + 1$$

135.
$$f(x) = \frac{5}{e^x - 2}$$

136.
$$f(x) = \frac{|x-2|}{x-2}$$

137.
$$H(x) = \tan 2x$$

138.
$$f(t) = \frac{t+3}{t^2+5t+6}$$

For the following exercises, decide if the function continuous at the given point. If it is discontinuous, what type of discontinuity is it?

139.
$$f(x) \frac{2x^2 - 5x + 3}{x - 1}$$
 at $x = 1$

140.
$$h(\theta) = \frac{\sin \theta - \cos \theta}{\tan \theta}$$
 at $\theta = \pi$

141.
$$g(u) = \begin{cases} \frac{6u^2 + u - 2}{2u - 1} & \text{if } u \neq \frac{1}{2}, \\ \frac{7}{2} & \text{if } u = \frac{1}{2} \end{cases}$$
, at $u = \frac{1}{2}$

142.
$$f(y) = \frac{\sin(\pi y)}{\tan(\pi y)}$$
, at $y = 1$

143.
$$f(x) = \begin{cases} x^2 - e^x & \text{if } x < 0 \\ x - 1 & \text{if } x \ge 0 \end{cases}$$
, at $x = 0$

144.
$$f(x) = \begin{cases} x \sin(x) & \text{if } x \le \pi \\ x \tan(x) & \text{if } x > \pi \end{cases}$$
, at $x = \pi$

In the following exercises, find the value(s) of *k* that makes each function continuous over the given interval.

145.
$$f(x) = \begin{cases} 3x + 2, & x < k \\ 2x - 3, & k \le x \le 8 \end{cases}$$

146.
$$f(\theta) = \begin{cases} \sin \theta, & 0 \le \theta < \frac{\pi}{2} \\ \cos(\theta + k), & \frac{\pi}{2} \le \theta \le \pi \end{cases}$$

147.
$$f(x) = \begin{cases} \frac{x^2 + 3x + 2}{x + 2}, & x \neq -2\\ k, & x = -2 \end{cases}$$

148.
$$f(x) = \begin{cases} e^{kx}, & 0 \le x < 4 \\ x + 3, & 4 \le x \le 8 \end{cases}$$

149.
$$f(x) = \begin{cases} \sqrt{kx}, & 0 \le x \le 3\\ x+1, & 3 < x \le 10 \end{cases}$$

In the following exercises, use the Intermediate Value Theorem (IVT).

150. Let
$$h(x) = \begin{cases} 3x^2 - 4, & x \le 2 \\ 5 + 4x, & x > 2 \end{cases}$$
 Over the interval

[0, 4], there is no value of x such that h(x) = 10, although h(0) < 10 and h(4) > 10. Explain why this does not contradict the IVT.

151. A particle moving along a line has at each time t a position function s(t), which is continuous. Assume s(2) = 5 and s(5) = 2. Another particle moves such that its position is given by h(t) = s(t) - t. Explain why there must be a value c for c < c < 5 such that c < c < 5.

152. **[T]** Use the statement "The cosine of t is equal to t cubed."

- a. Write a mathematical equation of the statement.
- Prove that the equation in part a. has at least one real solution.
- Use a calculator to find an interval of length 0.01 that contains a solution.

153. Apply the IVT to determine whether $2^x = x^3$ has a solution in one of the intervals [1.25, 1.375] or [1.375, 1.5]. Briefly explain your response for each interval.

154. Consider the graph of the function y = f(x) shown in the following graph.

- a. Find all values for which the function is discontinuous.
- For each value in part a., state why the formal definition of continuity does not apply.
- Classify each discontinuity as either jump, removable, or infinite.

155. Let
$$f(x) = \begin{cases} 3x, & x > 1 \\ x^3, & x < 1 \end{cases}$$

- a. Sketch the graph of *f*.
- b. Is it possible to find a value k such that f(1) = k, which makes f(x) continuous for all real numbers? Briefly explain.

156. Let
$$f(x) = \frac{x^4 - 1}{x^2 - 1}$$
 for $x \neq -1$, 1.

- a. Sketch the graph of *f*.
- b. Is it possible to find values k_1 and k_2 such that $f(-1) = k_1$ and $f(1) = k_2$, and that makes f(x) continuous for all real numbers? Briefly explain.
- 157. Sketch the graph of the function y = f(x) with properties i. through vii.
 - i. The domain of *f* is $(-\infty, +\infty)$.
 - ii. *f* has an infinite discontinuity at x = -6.
 - iii. f(-6) = 3

iv.
$$\lim_{x \to -3^-} f(x) = \lim_{x \to -3^+} f(x) = 2$$

- v. f(-3) = 3
- vi. f is left continuous but not right continuous at x = 3
- vii. $\lim_{x \to -\infty} f(x) = -\infty$ and $\lim_{x \to +\infty} f(x) = +\infty$

- 158. Sketch the graph of the function y = f(x) with properties i. through iv.
 - i. The domain of f is [0, 5].
 - ii. $\lim_{x \to 1^+} f(x)$ and $\lim_{x \to 1^-} f(x)$ exist and are equal.
 - iii. f(x) is left continuous but not continuous at x = 2, and right continuous but not continuous at x = 3.
 - iv. f(x) has a removable discontinuity at x=1, a jump discontinuity at x=2, and the following limits hold: $\lim_{x\to 3^-} f(x) = -\infty$ and $\lim_{x\to 3^+} f(x) = 2$.

In the following exercises, suppose y = f(x) is defined for all x. For each description, sketch a graph with the indicated property.

- 159. Discontinuous at x = 1 with $\lim_{x \to -1} f(x) = -1$ and $\lim_{x \to 2} f(x) = 4$
- 160. Discontinuous at x = 2 but continuous elsewhere with $\lim_{x \to 0} f(x) = \frac{1}{2}$

Determine whether each of the given statements is true. Justify your response with an explanation or counterexample.

- 161. $f(t) = \frac{2}{e^t e^{-t}}$ is continuous everywhere.
- 162. If the left- and right-hand limits of f(x) as $x \to a$ exist and are equal, then f cannot be discontinuous at x = a.
- 163. If a function is not continuous at a point, then it is not defined at that point.
- 164. According to the IVT, $\cos x \sin x x = 2$ has a solution over the interval [-1, 1].
- 165. If f(x) is continuous such that f(a) and f(b) have opposite signs, then f(x) = 0 has exactly one solution in [a, b].
- 166. The function $f(x) = \frac{x^2 4x + 3}{x^2 1}$ is continuous over the interval [0, 3].

Chapter 2 | Limits 193

167. If f(x) is continuous everywhere and f(a), f(b) > 0, then there is no root of f(x) in the interval [a, b].

[T] The following problems consider the scalar form of Coulomb's law, which describes the electrostatic force between two point charges, such as electrons. It is given by the equation $F(r) = k_e \frac{|q_1 q_2|}{r^2}$, where k_e is Coulomb's constant, q_i are the magnitudes of the charges of the two particles, and r is the distance between the two particles.

- 168. To simplify the calculation of a model with many interacting particles, after some threshold value r = R, we approximate F as zero.
 - a. Explain the physical reasoning behind this assumption.
 - b. What is the force equation?
 - c. Evaluate the force F using both Coulomb's law and our approximation, assuming two protons with a charge magnitude of 1.6022×10^{-19} coulombs (C), and the Coulomb constant $k_e = 8.988 \times 10^9 \, \mathrm{Nm^2/C^2}$ are 1 m apart. Also, assume $R < 1 \, \mathrm{m}$. How much inaccuracy does our approximation generate? Is our approximation reasonable?
 - d. Is there any finite value of *R* for which this system remains continuous at *R*?

169. Instead of making the force 0 at R, instead we let the force be 10^{-20} for $r \ge R$. Assume two protons, which have a magnitude of charge 1.6022×10^{-19} C, and the Coulomb constant $k_e = 8.988 \times 10^9 \, \mathrm{Nm^2/C^2}$. Is there a value R that can make this system continuous? If so, find it.

Recall the discussion on spacecraft from the chapter opener. The following problems consider a rocket launch from Earth's surface. The force of gravity on the rocket is given by $F(d) = -mk/d^2$, where m is the mass of the rocket, d is the distance of the rocket from the center of Earth, and k is a constant.

170. **[T]** Determine the value and units of *k* given that the mass of the rocket is 3 million kg. (*Hint*: The distance from the center of Earth to its surface is 6378 km.)

171. **[T]** After a certain distance *D* has passed, the gravitational effect of Earth becomes quite negligible, so we can approximate the force function by

$$F(d) = \begin{cases} -\frac{mk}{d^2} & \text{if } d < D\\ 10,000 & \text{if } d \ge D \end{cases}$$
. Using the value of k found in

the previous exercise, find the necessary condition D such that the force function remains continuous.

172. As the rocket travels away from Earth's surface, there is a distance D where the rocket sheds some of its mass, since it no longer needs the excess fuel storage. We can

write this function as
$$F(d) = \begin{cases} -\frac{m_1 k}{d^2} & \text{if } d < D \\ -\frac{m_2 k}{d^2} & \text{if } d \geq D \end{cases}$$
 . Is there

a *D* value such that this function is continuous, assuming $m_1 \neq m_2$?

Prove the following functions are continuous everywhere

173.
$$f(\theta) = \sin \theta$$

174.
$$g(x) = |x|$$

175. Where is
$$f(x) = \begin{cases} 0 \text{ if } x \text{ is irrational} \\ 1 \text{ if } x \text{ is rational} \end{cases}$$
 continuous?