2.5 EXERCISES

In the following exercises, write the appropriate $\varepsilon - \delta$ definition for each of the given statements.

176.
$$\lim_{x \to a} f(x) = N$$

177. $\lim_{t \to b} g(t) = M$

178. $\lim_{x \to c} h(x) = L$

179. $\lim_{x \to a} \varphi(x) = A$

The following graph of the function *f* satisfies $\lim_{x \to 2} f(x) = 2$. In the following exercises, determine a

180. If $0 < |x - 2| < \delta$, then |f(x) - 2| < 1.

181. If $0 < |x - 2| < \delta$, then |f(x) - 2| < 0.5.

The following graph of the function *f* satisfies $\lim_{x \to 3} f(x) = -1$. In the following exercises, determine a value of $\delta > 0$ that satisfies each statement.

182. If $0 < |x - 3| < \delta$, then |f(x) + 1| < 1.

183. If $0 < |x - 3| < \delta$, then |f(x) + 1| < 2.

The following graph of the function *f* satisfies $\lim_{x \to 3} f(x) = 2$. In the following exercises, for each value of ε , find a value of $\delta > 0$ such that the precise definition

184. $\varepsilon = 1.5$ 185. $\varepsilon = 3$

[T] In the following exercises, use a graphing calculator to find a number δ such that the statements hold true.

186.
$$\left| \sin(2x) - \frac{1}{2} \right| < 0.1$$
, whenever $\left| x - \frac{\pi}{12} \right| < \delta$

187.
$$|\sqrt{x-4}-2| < 0.1$$
, whenever $|x-8| < \delta$

In the following exercises, use the precise definition of limit to prove the given limits.

188.
$$\lim_{x \to 2} (5x + 8) = 18$$

189.
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = 6$$

190.
$$\lim_{x \to 2} \frac{2x^2 - 3x - 2}{x - 2} = 5$$

191.
$$\lim_{x \to 0} x^4 = 0$$

192.
$$\lim_{x \to 2} (x^2 + 2x) = 8$$

In the following exercises, use the precise definition of limit to prove the given one-sided limits.

193.
$$\lim_{x \to 5^{-}} \sqrt{5 - x} = 0$$

194.

$$\lim_{x \to 0^+} f(x) = -2, \text{ where } f(x) = \begin{cases} 8x - 3, \text{ if } x < 0\\ 4x - 2, \text{ if } x \ge 0 \end{cases}$$

195.
$$\lim_{x \to 1^{-}} f(x) = 3$$
, where $f(x) = \begin{cases} 5x - 2, & \text{if } x < 1 \\ 7x - 1, & \text{if } x \ge 1 \end{cases}$.

In the following exercises, use the precise definition of limit to prove the given infinite limits.

$$196. \quad \lim_{x \to 0} \frac{1}{x^2} = \infty$$

197.
$$\lim_{x \to -1} \frac{3}{(x+1)^2} = \infty$$

198.
$$\lim_{x \to 2} -\frac{1}{(x-2)^2} = -\infty$$

199. An engineer is using a machine to cut a flat square of Aerogel of area 144 cm². If there is a maximum error tolerance in the area of 8 cm², how accurately must the engineer cut on the side, assuming all sides have the same length? How do these numbers relate to δ , ε , *a*, and *L*?

200. Use the precise definition of limit to prove that the following limit does not exist: $\lim_{x \to 1} \frac{|x - 1|}{x - 1}.$

201. Using precise definitions of limits, prove that $\lim_{x \to 0} f(x)$ does not exist, given that f(x) is the ceiling function. (*Hint*: Try any $\delta < 1$.)

202. Using precise definitions of limits, prove that $\lim_{x \to 0} f(x)$ does not exist: $f(x) = \begin{cases} 1 \text{ if } x \text{ is rational} \\ 0 \text{ if } x \text{ is irrational} \end{cases}$ (*Hint*: Think about how you can always choose a rational number 0 < r < d, but |f(r) - 0| = 1.)

203. Using precise definitions of limits, determine $\lim_{x \to 0} f(x) \text{ for } f(x) = \begin{cases} x \text{ if } x \text{ is rational} \\ 0 \text{ if } x \text{ is irrational} \end{cases}$ (*Hint*: Break into two cases, *x* rational and *x* irrational.)

204. Using the function from the previous exercise, use the precise definition of limits to show that $\lim_{x \to a} f(x)$ does not exist for $a \neq 0$.

For the following exercises, suppose that $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$ both exist. Use the precise definition of limits to prove the following limit laws:

205.
$$\lim_{x \to a} (f(x) + g(x)) = L + M$$

206. $\lim_{x \to a} [cf(x)] = cL$ for any real constant *c* (*Hint*: Consider two cases: c = 0 and $c \neq 0$.)

207.
$$\lim_{x \to a} [f(x)g(x)] = LM. \quad (Hint: |f(x)g(x) - LM| = |f(x)g(x) - f(x)M + f(x)M - LM| \le |f(x)||g(x) - M| + |M||f(x) - L|.)$$