2.3 EXERCISES

In the following exercises, use the limit laws to evaluate each limit. Justify each step by indicating the appropriate limit law(s).
83. $\lim _{x \rightarrow 0}\left(4 x^{2}-2 x+3\right)$
84. $\lim _{x \rightarrow 1} \frac{x^{3}+3 x^{2}+5}{4-7 x}$
85. $\lim _{x \rightarrow-2} \sqrt{x^{2}-6 x+3}$
86. $\lim _{x \rightarrow-1}(9 x+1)^{2}$

In the following exercises, use direct substitution to evaluate each limit.
87. $\lim _{x \rightarrow 7} x^{2}$
88. $\lim _{x \rightarrow-2}\left(4 x^{2}-1\right)$
89. $\lim _{x \rightarrow 0} \frac{1}{1+\sin x}$
90. $\lim _{x \rightarrow 2} e^{2 x-x^{2}}$
91. $\lim _{x \rightarrow 1} \frac{2-7 x}{x+6}$
92. $\lim _{x \rightarrow 3} \ln e^{3 x}$

In the following exercises, use direct substitution to show that each limit leads to the indeterminate form $0 / 0$. Then, evaluate the limit.
93. $\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}$
94. $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-2 x}$
95. $\lim _{x \rightarrow 6} \frac{3 x-18}{2 x-12}$
96. $\lim _{h \rightarrow 0} \frac{(1+h)^{2}-1}{h}$
97. $\lim _{t \rightarrow 9} \frac{t-9}{\sqrt{t}-3}$
98. $\lim _{h \rightarrow 0} \frac{\frac{1}{a+h}-\frac{1}{a}}{h}$, where a is a non-zero real-valued constant
99. $\lim _{\theta \rightarrow \pi} \frac{\sin \theta}{\tan \theta}$
100. $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}$
101. $\lim _{x \rightarrow 1 / 2} \frac{2 x^{2}+3 x-2}{2 x-1}$
102. $\lim _{x \rightarrow-3} \frac{\sqrt{x+4}-1}{x+3}$

In the following exercises, use direct substitution to obtain an undefined expression. Then, use the method of Example 2.23 to simplify the function to help determine the limit.
103. $\lim _{x \rightarrow-2^{-}} \frac{2 x^{2}+7 x-4}{x^{2}+x-2}$
104. $\lim _{x \rightarrow-2^{+}} \frac{2 x^{2}+7 x-4}{x^{2}+x-2}$
105. $\lim _{x \rightarrow 1^{-}} \frac{2 x^{2}+7 x-4}{x^{2}+x-2}$
106. $\lim _{x \rightarrow 1^{+}} \frac{2 x^{2}+7 x-4}{x^{2}+x-2}$

In the following exercises, assume that $\lim _{x \rightarrow 6} f(x)=4, \lim _{x \rightarrow 6} g(x)=9$, and $\lim _{x \rightarrow 6} h(x)=6$. Use these three facts and the limit laws to evaluate each limit.
107. $\lim _{x \rightarrow 6} 2 f(x) g(x)$
108. $\lim _{x \rightarrow 6} \frac{g(x)-1}{f(x)}$
109. $\lim _{x \rightarrow 6}\left(f(x)+\frac{1}{3} g(x)\right)$
110. $\lim _{x \rightarrow 6} \frac{(h(x))^{3}}{2}$
111. $\lim _{x \rightarrow 6} \sqrt{g(x)-f(x)}$
112. $\lim _{x \rightarrow 6} x \cdot h(x)$

$$
\begin{aligned}
& \text { 113. } \lim _{x \rightarrow 6}[(x+1) \cdot f(x)] \\
& \text { 114. } \lim _{x \rightarrow 6}(f(x) \cdot g(x)-h(x))
\end{aligned}
$$

[T] In the following exercises, use a calculator to draw the graph of each piecewise-defined function and study the graph to evaluate the given limits.
115. $f(x)= \begin{cases}x^{2}, & x \leq 3 \\ x+4, & x>3\end{cases}$
a. $\lim _{x \rightarrow 3^{-}} f(x)$
b. $\lim _{x \rightarrow 3^{+}} f(x)$
116. $g(x)= \begin{cases}x^{3}-1, & x \leq 0 \\ 1, & x>0\end{cases}$
a. $\lim _{x \rightarrow 0^{-}} g(x)$
b. $\lim _{x \rightarrow 0^{+}} g(x)$
117. $h(x)= \begin{cases}x^{2}-2 x+1, & x<2 \\ 3-x, & x \geq 2\end{cases}$
a. $\lim _{x \rightarrow 2^{-}} h(x)$
b. $\lim _{x \rightarrow 2^{+}} h(x)$

In the following exercises, use the following graphs and the limit laws to evaluate each limit.

118. $\lim _{x \rightarrow-3^{+}}(f(x)+g(x))$
119. $\lim _{x \rightarrow-3^{-}}(f(x)-3 g(x))$
120. $\lim _{x \rightarrow 0} \frac{f(x) g(x)}{3}$
121. $\lim _{x \rightarrow-5} \frac{2+g(x)}{f(x)}$
122. $\lim _{x \rightarrow 1}(f(x))^{2}$
123. $\lim _{x \rightarrow 1} \sqrt[3]{f(x)-g(x)}$
124. $\lim _{x \rightarrow-7}(x \cdot g(x))$
125. $\lim _{x \rightarrow-9}[x \cdot f(x)+2 \cdot g(x)]$
126. [T] True or False? If
$2 x-1 \leq g(x) \leq x^{2}-2 x+3$, then $\lim _{x \rightarrow 2} g(x)=0$.

For the following problems, evaluate the limit using the squeeze theorem. Use a calculator to graph the functions $f(x), g(x)$, and $h(x)$ when possible.
127. [T] $\lim _{\theta \rightarrow 0} \theta^{2} \cos \left(\frac{1}{\theta}\right)$
128. $\lim _{x \rightarrow 0} f(x)$, where $f(x)= \begin{cases}0, & x \text { rational } \\ x^{2}, & x \text { irrrational }\end{cases}$
129. [T] In physics, the magnitude of an electric field generated by a point charge at a distance r in vacuum is governed by Coulomb's law: $E(r)=\frac{q}{4 \pi \varepsilon_{0} r^{2}}$, where E represents the magnitude of the electric field, q is the charge of the particle, r is the distance between the particle and where the strength of the field is measured, and $\frac{1}{4 \pi \varepsilon_{0}}$ is Coulomb's constant: $8.988 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$.
a. Use a graphing calculator to graph $E(r)$ given that the charge of the particle is $q=10^{-10}$.
b. Evaluate $\lim _{r \rightarrow 0^{+}} E(r)$. What is the physical meaning of this quantity? Is it physically relevant? Why are you evaluating from the right?
130. [T] The density of an object is given by its mass divided by its volume: $\rho=m / V$.
a. Use a calculator to plot the volume as a function of density ($V=m / \rho$), assuming you are examining something of mass $8 \mathrm{~kg}(m=8)$.
b. Evaluate $\lim _{\rho \rightarrow 0^{+}} V(\rho)$ and explain the physical meaning.

