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2.4 | Continuity

Learning Objectives

2.4.1 Explain the three conditions for continuity at a point.
2.4.2 Describe three kinds of discontinuities.

2.4.3 Define continuity on an interval.

2.4.4 State the theorem for limits of composite functions.
2.4.5 Provide an example of the intermediate value theorem.

Many functions have the property that their graphs can be traced with a pencil without lifting the pencil from the page. Such
functions are called continuous. Other functions have points at which a break in the graph occurs, but satisfy this property
over intervals contained in their domains. They are continuous on these intervals and are said to have a discontinuity at a
point where a break occurs.

We begin our investigation of continuity by exploring what it means for a function to have continuity at a point. Intuitively,
a function is continuous at a particular point if there is no break in its graph at that point.

Continuity at a Point

Before we look at a formal definition of what it means for a function to be continuous at a point, let’s consider various
functions that fail to meet our intuitive notion of what it means to be continuous at a point. We then create a list of conditions
that prevent such failures.

Our first function of interest is shown in Figure 2.32. We see that the graph of f(x) has a hole at a. In fact, f(a) is

undefined. At the very least, for f(x) to be continuous at a, we need the following condition:

1. f(a) is defined.
Y
f(x)
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Figure 2.32 The function f(x) is not continuous at a

because f(a) is undefined.

However, as we see in Figure 2.33, this condition alone is insufficient to guarantee continuity at the point a. Although
f(a) is defined, the function has a gap at a. In this example, the gap exists because xli_I)na f(x) does not exist. We must add

another condition for continuity at a—namely,

ii. xh_r)na f(x) exists.



180 Chapter 2 | Limits

yi

)]
B3

Figure 2.33 The function f(x) is not continuous at a

because lim f(x) does not exist.
X —=>a

However, as we see in Figure 2.34, these two conditions by themselves do not guarantee continuity at a point. The function
in this figure satisfies both of our first two conditions, but is still not continuous at a. We must add a third condition to our
list:

1ii. xli_I)na fx) = f(a).
yi
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Figure 2.34 The function f(x) is not continuous at a
because xll_r)nﬂ fx) # f(a).

Now we put our list of conditions together and form a definition of continuity at a point.

Definition

A function f(x) is continuous at a point a if and only if the following three conditions are satisfied:
i. f(a) is defined
ii. xh_r)na f(x) exists
iii. xh_r)naf(x) = f(a)

A function is discontinuous at a poeint a if it fails to be continuous at a.

The following procedure can be used to analyze the continuity of a function at a point using this definition.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12



Chapter 2 | Limits 181

Problem-Solving Strategy: Determining Continuity at a Point

1. Check to see if f(a) is defined. If f(a) is undefined, we need go no further. The function is not continuous
ata. If f(a) is defined, continue to step 2.
2. Compute xli_r)na f(x). In some cases, we may need to do this by first computing lim_ f(x) and lim+ f(x).
X —da

X—a

If xlgna f(x) does not exist (that is, it is not a real number), then the function is not continuous at a and the

problem is solved. If xli_Ipa f(x) exists, then continue to step 3.
3. Compare f(a) and xli_I)na f(x). If xli_r)na f(x) # f(a), then the function is not continuous at a. If

xli_r)na f(x) = f(a), then the function is continuous at a.

The next three examples demonstrate how to apply this definition to determine whether a function is continuous at a given
point. These examples illustrate situations in which each of the conditions for continuity in the definition succeed or fail.

Example 2.26

Determining Continuity at a Point, Condition 1

Using the definition, determine whether the function f(x) = ()c2 —4)/(x —2) is continuous at x = 2. Justify

the conclusion.

Solution
Let’s begin by trying to calculate f(2). We can see that f(2) =0/0, which is undefined. Therefore,

2
_x’—4

is discontinuous at 2 because f(2) is undefined. The graph of f(x) is shown in Figure 2.35.

Yi

f(x)

Figure 2.35 The function f(x) is discontinuous at 2 because
f(2) is undefined.
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Example 2.27

Determining Continuity at a Point, Condition 2

2 .
Using the definition, determine whether the function f(x) = {—x +4ifx<3 is continuous at x = 3. Justify

4x—-8 ifx>3
the conclusion.

Solution
Let’s begin by trying to calculate £(3).

f@) = -3 +4=-5

Thus, f(3) is defined. Next, we calculate lim3 f(x). To do this, we must compute ling_ f(x) and
X = X =

s
lim_ f(x) = - BH+4=-5
and

lim f(x) =43)-8=4.
x -3t

Therefore, lim3 f(x) does not exist. Thus, f(x) is not continuous at 3. The graph of f(x) is shown in Figure
X =

2.36.
Yi

Figure 2.36 The function f(x) is not continuous at 3

because lim_f(x) does not exist.
x—3
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Example 2.28

Determining Continuity at a Point, Condition 3

. L . . SINX g2
Using the definition, determine whether the function f(x) =4 X is continuous at x = 0.
1ifx=0
Solution
First, observe that
fO) =1
Next,
sinx _ 1.

xh_r)n()f () = xlgno X
Last, compare f(0) and lim1 f(x). We see that
X —
f(0)=1= lim f(x).
x =0

Since all three of the conditions in the definition of continuity are satisfied, f(x) is continuous at x = 0.

@ 2.21 2x+1 ifx<1
Using the definition, determine whether the function f(x) = 2 if x =1 is continuousat x = 1.
—x+4 ifx>1

If the function is not continuous at 1, indicate the condition for continuity at a point that fails to hold.

By applying the definition of continuity and previously established theorems concerning the evaluation of limits, we can
state the following theorem.

Theorem 2.8: Continuity of Polynomials and Rational Functions

Polynomials and rational functions are continuous at every point in their domains.

Proof

Previously, we showed that if p(x) and g¢(x) are polynomials, xli_r)nap(x) = p(a) for every polynomial p(x) and

PO _ p@)
*Haglx) ~ qa)

d

as long as g(a) # 0. Therefore, polynomials and rational functions are continuous on their domains.

We now apply Continuity of Polynomials and Rational Functions to determine the points at which a given rational
function is continuous.

Example 2.29

Continuity of a Rational Function
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For what values of x is f(x) = ; 1‘ % continuous?
Solution
x+1

The rational function f(x) = " is continuous for every value of x except x = 5.

-5

@ 2.22  For what values of xis f(x) = 3x* — 4x? continuous?

Types of Discontinuities

As we have seen in Example 2.26 and Example 2.27, discontinuities take on several different appearances. We
classify the types of discontinuities we have seen thus far as removable discontinuities, infinite discontinuities, or jump
discontinuities. Intuitively, a removable discontinuity is a discontinuity for which there is a hole in the graph, a jump
discontinuity is a noninfinite discontinuity for which the sections of the function do not meet up, and an infinite
discontinuity is a discontinuity located at a vertical asymptote. Figure 2.37 illustrates the differences in these types of
discontinuities. Although these terms provide a handy way of describing three common types of discontinuities, keep in
mind that not all discontinuities fit neatly into these categories.

y i i
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removable jump

discontinuity discontinuity
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infinite
discontinuity
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xV
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Figure 2.37 Discontinuities are classified as (a) removable, (b) jump, or (c) infinite.

These three discontinuities are formally defined as follows:

Definition

If f(x) is discontinuous at a, then

1. f has a removable discontinuity at a if xlgna f(x) exists. (Note: When we state that xli_r)na f(x) exists, we

mean that xli_I)na f(x) =L, where L is a real number.)

2. f has a jump discontinuity at a if lim_ f(x) and lim+ f(x) both exist, but lim_ f(x) # lim+ fx).
X—a xX—a

X —>a X —>a

(Note: When we state that lim_ f(x) and lim+ f(x) both exist, we mean that both are real-valued and that
L= xX—a

neither take on the values +o0.)

3. f has an infinite discontinuity at a if lim_ f(x) = £o0 or lim f(x) = +co.
L= X —>a
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Example 2.30

Classifying a Discontinuity

2
In Example 2.26, we showed that f(x) = X-—=4%

- is discontinuous at x = 2. Classify this discontinuity as

removable, jump, or infinite.

Solution

To classify the discontinuity at 2 we must evaluate lim2 fx):
X —

2
; — limX_ =4
Jmpf (= i
x=2D(x+2)

lel—r>nZ x—2
lim_(x +2)
x—2

=4

Since fis discontinuous at 2 and lim2 f(x) exists, fhas a removable discontinuity at x = 2.
X —

Example 2.31

Classifying a Discontinuity

2 .
In Example 2.27, we showed that f(x) = {—x +4ifx<3 is discontinuous at x = 3. Classify this
4x—-8 ifx>3

discontinuity as removable, jump, or infinite.

Solution

Earlier, we showed that f is discontinuous at 3 because lim3 f(x) does not exist. However, since
X —

1irr31_ f(x) =-5 and lim+ f(x) =4 both exist, we conclude that the function has a jump discontinuity at 3.
X —

x—3

Example 2.32
Classifying a Discontinuity

x+2
x+1

discontinuity as removable, jump, or infinite.

Determine whether f(x) = is continuous at —1. If the function is discontinuous at —1, classify the

Solution

The function value f(—1) is undefined. Therefore, the function is not continuous at —1. To determine the type of
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discontinuity, we must determine the limit at —1. We see that  lim _ x+2 _ —oo and lim x+2 _
x> -1"x+1 _]+X+1

X =

+00.

Therefore, the function has an infinite discontinuity at —1.

2.23 2
@ For f(x)= {x3 1£x 7 i, decide whether f is continuous at 1. If f is not continuous at 1, classify the
if x=

discontinuity as removable, jump, or infinite.

Continuity over an Interval

Now that we have explored the concept of continuity at a point, we extend that idea to continuity over an interval. As
we develop this idea for different types of intervals, it may be useful to keep in mind the intuitive idea that a function is
continuous over an interval if we can use a pencil to trace the function between any two points in the interval without lifting
the pencil from the paper. In preparation for defining continuity on an interval, we begin by looking at the definition of what
it means for a function to be continuous from the right at a point and continuous from the left at a point.

Continuity from the Right and from the Left

A function f(x) is said to be continuous from the right at a if lim+ f(x) = f(a).
X—=a

A function f(x) is said to be continuous from the left at a if lim_ f(x) = f(a).
X —>a

A function is continuous over an open interval if it is continuous at every point in the interval. A function f(x) is continuous
over a closed interval of the form [a, b] if it is continuous at every point in (a, ) and is continuous from the right at a
and is continuous from the left at b. Analogously, a function f(x) is continuous over an interval of the form (a, b] if it is
continuous over (a, b) and is continuous from the left at b. Continuity over other types of intervals are defined in a similar
fashion.

Requiring that lim+ f(x) = f(a) and linl}_ f(x) = f(b) ensures that we can trace the graph of the function from the
X —

X—a

point (a, f(a)) to the point (b, f(b)) without lifting the pencil. If, for example, lim+ f(x) # f(a), we would need to lift

X—a

our pencil to jump from f(a) to the graph of the rest of the function over (a, b].

Example 2.33

Continuity on an Interval

x—1

x2+2x

State the interval(s) over which the function f(x) = is continuous.

Solution

Since f(x) = % is a rational function, it is continuous at every point in its domain. The domain of
+ 2x

f(x) is the set (—o0, =2) U (=2, 0) U (0, +00). Thus, f(x) is continuous over each of the intervals
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(=00, =2), (=2, 0), and (0, +o0).

Example 2.34

Continuity over an Interval

State the interval(s) over which the function f(x) = V4 — x? is continuous.

Solution

From the limit laws, we know that xli_r)na V4 — x2 = V4 — 4 for all values of a in (=2, 2). We also know that

lim V4 —x?=0 exists and 1in21_ V4 — x2 =0 exists. Therefore, f(x) is continuous over the interval
X —

x— =2

[-2, 2].

@ 2.24  State the interval(s) over which the function f(x) = Vx + 3 is continuous.

The Composite Function Theorem allows us to expand our ability to compute limits. In particular, this theorem
ultimately allows us to demonstrate that trigonometric functions are continuous over their domains.

Theorem 2.9: Composite Function Theorem

If f(x) is continuous at L and xli_r)nag(x) =L, then

Jim f(g(x)) = f( lim ¢(x)) = f(L).

Before we move on to Example 2.35, recall that earlier, in the section on limit laws, we showed limocosx =1 = cos(0).
X —

Consequently, we know that f(x) = cosx is continuous at 0. In Example 2.35 we see how to combine this result with the

composite function theorem.

Example 2.35

Limit of a Composite Cosine Function

Evaluate lim cos (x - E)

x> /2 2

Solution
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A

2) =0 and cosx is continuous at 0,

The given function is a composite of cosx and x — % Since lim/ (x -
X — Tt

we may apply the composite function theorem. Thus,

, Lm,,C08 (x - %) =08 l_i)rr]%/z(x - %)) =cos(@=1.

@’ 2.25 Evaluate xli_r)n”sin(x — 7).

The proof of the next theorem uses the composite function theorem as well as the continuity of f(x) =sinx and

g(x) = cosx at the point 0 to show that trigonometric functions are continuous over their entire domains.

Theorem 2.10: Continuity of Trigonometric Functions

Trigonometric functions are continuous over their entire domains.

Proof
We begin by demonstrating that cosx is continuous at every real number. To do this, we must show that xli_r}ngcosx = cosa

for all values of a.

lim cosx = lim cos((x —a) + a) rewritex =x—a+a
X —=a X —=a

xli_r)ng(cos (x —a)cosa — sin(x — a)sina) apply the identity for the cosine of the sum of two angles

= cos (Xlim (x— a))cosa - sin(xlim (x— a))sina lim (x —a) = 0, and sinx and cosx are continuous at 0
- dad —>d X—=a

= cos(0)cosa — sin(0)sina evaluate cos(0) and sin(0) and simplify
=1-cosa—0-sina = cosa.

The proof that sinx is continuous at every real number is analogous. Because the remaining trigonometric functions may

be expressed in terms of sinx and cosx, their continuity follows from the quotient limit law.

O

As you can see, the composite function theorem is invaluable in demonstrating the continuity of trigonometric functions.
As we continue our study of calculus, we revisit this theorem many times.

The Intermediate Value Theorem

Functions that are continuous over intervals of the form [a, b], where a and b are real numbers, exhibit many useful

properties. Throughout our study of calculus, we will encounter many powerful theorems concerning such functions. The
first of these theorems is the Intermediate Value Theorem.

Theorem 2.11: The Intermediate Value Theorem

Let fbe continuous over a closed, bounded interval [a, b]. If z is any real number between f(a) and f(b), then there

is a number c in [a, b] satisfying f(c) = z in Figure 2.38.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12



Chapter 2 | Limits 189
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Figure 2.38 There is a number ¢ € [a, b]| that satisfies

flo)=1z

Example 2.36

Application of the Intermediate Value Theorem

Show that f(x) = x — cosx has at least one zero.

Solution
Since f(x) = x — cosx is continuous over (—oo0, +00), it is continuous over any closed interval of the form
la, b]. If you can find an interval [a, b] such that f(a) and f(b) have opposite signs, you can use the
Intermediate Value Theorem to conclude there must be a real number c in (a, b) that satisfies f(c) = 0. Note
that

f(0)=0-cos(0)=-1<0

and

)-5-cog =550

Using the Intermediate Value Theorem, we can see that there must be a real number c in [0, 7/2] that satisfies

f(c) = 0. Therefore, f(x) =x — cosx has at least one zero.

Example 2.37

When Can You Apply the Intermediate Value Theorem?

If f(x) is continuous over [0, 2], f(0) > 0 and f(2) >0, can we use the Intermediate Value Theorem to

conclude that f(x) has no zeros in the interval [0, 2]? Explain.
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Solution
No. The Intermediate Value Theorem only allows us to conclude that we can find a value between f(0) and

f(2); it doesn’t allow us to conclude that we can’t find other values. To see this more clearly, consider the

function f(x) = (x — 1)2. It satisfies f(0)=1>0, f(2)=1>0, and f(1)=0.

Example 2.38

When Can You Apply the Intermediate Value Theorem?

For f(x)=1/x, f(-1)=—-1<0 and f(1)=1> 0. Can we conclude that f(x) has a zero in the interval
[-1, 1]?

Solution

No. The function is not continuous over [—1, 1]. The Intermediate Value Theorem does not apply here.

@ 2.26  Show that f(x) = x> — x> = 3x + 1 has a zero over the interval [0, 1].
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